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Foreword

The unprecedented proliferation of Al systems has led
to their integration across several high-stakes functional
applications. While the merits of Al are extensive,
ranging from scientific breakthroughs to enhanced
productivity, they are often accompanied by unique
challenges that require rigorous oversight and
preparedness. It therefore becomes essential to strike a
fine balance between acknowledging the extraordinary
potential of artificial intelligence and the responsibility
of managing the impending risks. From a Global South
perspective, where the impact of AI is deeply
intertwined with infrastructural challenges and unique
cultural contexts, establishing a robust framework for
responsible AI deployment is an imperative for
identifying risks that lie beyond the scope of technical
metrics.

Al safety encompasses robust standards and evaluative
methodologies to align AI development with the
collective interests of society, thereby minimizing the
probability of unanticipated detrimental outcomes. The
field of AI safety can play a major role in shaping the
trajectory of responsible AI adoption in the Global
South, which is characterized by linguistic diversity,
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resource constraints, and an increasing need to focus on
social empowerment.

Al safety is no longer a field solely falling within the
realm of theoretical computer science, having far-
reaching implications facilitated by the large-scale
adoption of AI across different domains. With Al safety
having established itself as a prominent field, this new
report - ‘Operationalising AI Safety: A lifecycle
Approach’ from the Centre for Communication
Governance at the National Law University Delhi with
support from Konrad-Adenauer-Stiftung presents a
meticulous and systematic evaluation of the evolving
landscape of this field. By attempting to offer insights to
a diverse range of stakeholders, this report can aid in
creating awareness and contributing meaningfully in
shaping the global dialogue within international
governance forums. Part I of the report explores the
various conceptions of Al safety followed by delving into
the evolution of the concept. By examining the
contemporary debates and challenges with
interpretations within the field of Al safety, this report
advocates embracing a socio-technical approach to it
associated with the contextual nuances of the Global
South.
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Part II of this report explores how AI safety is
operationalised through a lifecycle approach. By
mapping the Al lifecycle, this report identifies specific
risks and harms inherent to each developmental stage.
The report also examines key corresponding governance
mechanisms for each stage, while providing insights on
how these mechanisms are reflected in legal
frameworks. The report concludes with elaborating on
key considerations for the Global South with respect to
the implementation of the governance mechanisms by
highlighting the contextualised challenges, local
realities, and experiences from the Global South.

This timely report is intended to serve as a reference for
a wide spectrum of actors across the AI ecosystem
including academicians, technologists, civil society
groups and policymakers. As Vice Chancellor of the
National Law University Delhi, I commend the Centre
for Communication Governance's vision in synthesizing
scholarship that engages closely with emerging global
issues. This report showcases the Centre's commitment
to policy-relevant research that integrates scholarly
research, governance and public advocacy.
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With India set to preside over the Al Impact Summit this
year, we have a pivotal window to prioritize the
operationalization of Al safety while ensuring that
Global South equities are at the heart of the discourse.
The Summit also offers a critical opportunity for India
to help shape the trajectory for responsible development
and deployment of AI for the Global South. It is
imperative for the Global South priorities and interests
to play a major part in informing and tuning the global
Al safety policy discourse.

£ t/?;;
L{ﬁ; Bd] pai)

Prof. (Dr.) G. S Bajpai

Vice Chancellor, National Law University Delhi



Note to Reader

This report is part of the Konrad-Adenauer-Stiftung
(KAS) Rule of Law Programme Asia’s ongoing work
on the governance, safety, and social impact of
artificial intelligence.

It is released at a particularly timely moment, as it is
launched alongside the India AI Impact Summit,
when global debates on Al are marked by heightened
momentum, visibility, and urgency. The AI Impact
Summit has brought together policymakers, industry
leaders, civil society, researchers, and technical
experts from across regions, generating strong
traction and dynamic exchanges on how Al systems
should be developed, governed, and deployed.
Launching this report in parallel with the Summit
allows its analysis to resonate with ongoing
discussions, benefit from heightened interest and
attention, and contribute meaningfully to shaping
emerging narratives and policy priorities around Al
safety at both regional and global levels.

Al safety is closely linked to Al security and Al ethics.
While AT safety refers to the practice of ensuring that
Al systems operate reliably, predictably, and without
causing unintended harm, AI security deals with
protecting systems from misuse, attacks, and
malicious actors. Al ethics, in turn, addresses broader
questions of fairness, accountability, transparency,
and respect for human rights. In practice, these areas
often overlap and cannot be treated separately.



The goal of this report is to move beyond purely
technical understandings of AI safety. It adopts a
holistic, lifecycle-based and socio-technical approach,
analysing how risks and harms can arise at every
stage of the Al lifecycle, from early planning and data
collection to deployment and post-deployment
monitoring. For instance, during the data collection
stage, Al developers are encouraged to keep detailed
records of where data comes from, how it was
collected, and whether consent was given. They
should also audit the data for fairness and accuracy.
This ensures that models are trained on trustworthy
and representative data, reducing the risk of bias or
unsafe outcomes later. This example illustrates how
Al safety is a step-by-step process that combines
technical measures with good governance.

The report shows how these risks are shaped not only
by how models are built, but also by laws, governance
structures, institutional choices, and social and
political contexts. By focusing on real-world, longer-
term and systemic risks, and by paying particular
attention to Global South contexts, the report aims to
support more practical and inclusive approaches to AI
safety.

For the KAS Rule of Law Programme Asia (RLPA),
working on Al safety is both timely and central to its
mission. Al systems are increasingly used in areas
that are fundamental to the rule of law, including
public administration, law enforcement, education,
healthcare, elections, or access to justice. When Al



systems are poorly governed, opaque, or unsafe, they
risk reinforcing existing inequalities, enabling
discrimination, weakening procedural fairness, and
undermining trust in public institutions. These risks
are particularly serious in contexts where legal
safeguards and oversight mechanisms are still
developing.

At the same time, when Al is being developed and
governed responsibly, it can strengthen institutions
and improve the delivery of public services. Engaging
with Al safety allows the RLPA to connect
technological developments with core rule of law
principles such as legality, accountability,
transparency, proportionality, and the protection of
fundamental rights.

The outcomes of the Al Impact Summit, whether new
governance frameworks, institutional initiatives, or
shifts in international policy debates, will strongly
influence how AI safety is wunderstood and
implemented in the years ahead, including the role of
Global South leadership in AI governance. Insights
and developments from the Summit will also inform
the next phase of research under the KAS Rule of Law
Programme Asia, helping to identify new research
priorities, and deepen engagement with regional
perspectives.

In this sense, this report is not a final statement, but
a contribution to an ongoing and evolving body of
work. It is intended to support continued learning,



dialogue, and collaboration as Al systems become
more deeply embedded in societies across Asia and
beyond.

Stefan Samse
Director, KAS Rule of Law Programme Asia

Olivia Schlouch
Programme Manager, KAS Rule of Law Programme
Asia



About NLUD

The National Law University Delhi is one of the
leading law universities in the capital city of India.
Established in 2008 by an Act of the Delhi legislature
(Act. No. 1 of 2009), the University is ranked second
in the National Institutional Ranking Framework for
the last five years. Dynamic in vision and robust in
commitment, the  University has shown
terrific promise to become a world-class institution in
a very short span of time. It follows a mandate to
transform and redefine the process of legal education.
The primary mission of the University is to create
lawyers who will be professionally competent,
technically sound and socially relevant, and will not
only enter the Bar and the Bench but also be equipped
to address the imperatives of the new millennium and
uphold the constitutional values. The University aims
to evolve and impart comprehensive and
interdisciplinary legal education which will
promote legal and ethical values, while fostering the
rule of law.

The University offers a five-year integrated B.A,,
LL.B. (Hons.), a one-year postgraduate masters in
law (LL.M), and a Ph.D. program, along
with professional programs, diploma and certificate
courses for both lawyers and non-lawyers. The
University has made tremendous contributions
to public discourse on law through pedagogy and
research. Over the last decade, the University has



established many specialised research centres, and
this includes the Centre for Communication
Governance (CCG), Centre for Innovation,
Intellectual Property and Competition, Centre
for Corporate Law and Governance, and Centre for
Criminology and Victimology. The University has
made submissions, recommendations, and worked in
advisory/consultant capacities with government
entities, universities in India and abroad, think tanks,
private sector organisations, and international
organisations. = The  University = works in
collaboration with other international universities on
various projects and has established MoU’s with
several other academic institutions.



About CCG

The Centre for Communication Governance at the
National Law University Delhi (CCG) was established
in 2013 to ensure that Indian legal education
establishments engage more meaningfully with
information technology law and policy and contribute
to improved governance and policy making. CCG is a
leading academic research centre dedicated to
undertaking rigorous academic research in India on
information technology law and policy in India.
Through its academic and policy research, CCG
engages meaningfully with policy making in India by
participating in public consultations, contributing to
parliamentary committees and other consultation
groups, and holding seminars, courses and
workshops for capacity building of different
stakeholders in the technology law and policy
domain.

The Centre has had multiple publications over the
years including reports on Exploring AISIs for the
Global South, The Road to WSIS+20: Key Country
Perspectives in the Twenty-Year Review of the World
Summit on the Information Society (India Chapter),
Platform Transparency under the EU’s Digital
Services Act: Opportunities and Challenges for the
Global South, Social Media Regulation and the Rule
of Law: Key Trends in Sri Lanka, India and
Bangladesh, Intermediary Liability in India, a report
Mapping the Blockchain Ecosystem in India and



Australia, a UNDP Guide on Drafting Data Protection
Legislation, a book on Privacy and the Indian
Supreme Court. The Centre has launched freely
accessible online databases - Privacy Law Library
(PLL) and High Court Tracker (HCT) to track privacy
jurisprudence across the country and more than
sixteen jurisdictions across the globe. CCG also has an
online ‘Teaching and Learning Resource’ database for
sharing research-oriented reading references on
information technology law and policy. In recent
times, the Centre has also offered courses on Al Law
and Policy, Technology and Policy, and first
principles of cybersecurity.
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Section I

Conceptions and Elements of Al
Safety

A. What does Al safety mean?

Al has achieved ubiquity across various domains,
establishing itself as an effective tool for enhancing
human capabilities and propelling its adoption across
several high-stakes scenarios such as healthcare,
financial markets, and public welfare. However, these
rapid advancements have also paved the way for
unchecked harms, inconsistent outcomes, and safety
concerns raising apprehension among users,
governance bodies, civil society groups, academia, Al
researchers and policymakers.? The accelerated
developments in the field of AI and the widespread
adoption of Large Language Models (LLMs) have also
highlighted its propensity for perpetuating harms
including bias, privacy breaches and rampant spread
of misinformation. 2 Notably, the perceived existential
dangers from advanced AI have also contributed
towards prioritising research on Al alignment 3 within
major tech companies. The imperative to deliberate
on Al safety has escalated, necessitating a
comprehensive examination of the multifaceted risks
inherent in AI design and deployment, as well as the
development of efficacious mitigation strategies to
address attendant or associated harms. 4

Operationalising Al Safety: A Lifecycle Approach 1
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In two sections, this report explores conceptions and
discourse related to the notion of AI safety and
subsequently, examines how key elements of Al safety
are operationalised within the lifecycle of AI
development and deployment. Section I of the report
explores the various conceptions of Al safety followed
by examining the evolution of the concept of Al safety.
This section synthesises current debates and
articulates a shift towards a socio-technical approach,
hence ensuring that safety mechanisms are
contextualised to the unique complexities of the
Global South. Section II of the report delineates the
methodologies for operationalising Al safety through
a lifecycle approach. By dissecting the different stages
of the AI lifecycle, the report offers insights on the
critical risks relevant to each stage, the corresponding
technical and governance interventions that can be
designed for risk mitigation, and key considerations
for the Global South.

B. Methodology

For the purpose of Section I in this report, we have
examined existing literature to summarily capture the
evolution of conceptions and risks associated with the
field of AI safety. In Section II, we have adopted a
skeletal lifecycle approach to identify and situate risks
and governance measures in the development and
deployment of an AI system. This discussion has
involved examining existing academic and technical
literature, policy reports, and legal analyses of

Operationalising Al Safety: A Lifecycle Approach 2



Centre for Communication Governance

relevant regulatory instruments. We have merged
certain stages of the lifecycle since the risks and
governance measures across these stages shared key
qualities and had significant similarities. The stages
classified have been isolated based on distinct
identifiable harms and corresponding mitigation
measures. These stages can be broken down further,
but for the purposes of our research, the five stages
identified are Inception and Planning, Data
Collection and Preparation, Model Design and
Training, Verification and Validation, and
Deployment and Post-Deployment. In each stage, we
identify pertinent risks, discuss key mitigation
measures from a technical lens and where applicable,
global regulatory efforts. Critically, we highlight the
socio-technical harms that can present with AI
systems, and what these harms and mitigations
efforts look like, in particular, for the Global South.
With a sub-section on ‘Considerations for the Global
South’ under each stage, we seek to contextualise and
highlight the unique challenges and lived realities to
account for when deploying Al systems in this part of
the world.

It is pertinent to note that the report was designed
with certain limitations in consideration. Given the
nascent stage of regulatory frameworks for AI, and
the limited publicly available information on
initiatives beyond the EU, UK, and US, this report
draws heavily on regulatory provisions and examples
from these three regions. Moreover, while this report

Operationalising Al Safety: A Lifecycle Approach 3
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introduces and acknowledges the importance of key
actors in the Al lifecycle, it does not discuss risk and
mitigation measures through this lens.

As part of our research for this report, we engaged
with expert stakeholders and conducted interviews.
Insights from our stakeholders have been
anonymously attributed. Our stakeholders include
Tarunima Prabhakar, Founder, Tattle Civic
Technologies; Rafael Zanatta, Director, Data Privacy
Brasil; Catherine Setiawan, Country Coordinator,
Global Index on Responsible Al; Diane Chang, Senior
Fellow at Tech Global Institute; and Kalika Bali,
Senior Principal Researcher at Microsoft. This
research has also involved stakeholder engagement
through an event on ‘Operationalising AI Safety’ held
at New Delhi on 6 November 2025. The panel and
roundtables saw participation from a diverse range of
stakeholders from the Global South, across sectors
including industry, government, academia, and civil
society. This event marked the report launch of our
report, titled ‘Exploring AISIs for the Global South.’
The event provided an introduction to CCG’s
exploration and research findings from the report,
including considerations for upcoming AISIs in the
Global South. Building on this, the discussions at the
panel and roundtables shaped insights for this report
and provided further clarity on how AI safety is
operationalised across the life cycle, and key
considerations for the Global South.

Operationalising Al Safety: A Lifecycle Approach 4
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C. How did the field of AI safety
evolve?

The rise of Al automation sparked theories regarding
machines' capability to generate unforeseeable
decisions and surpass human control as early as the
1960s.5 ¢ Research highlights how some artificially
intelligent agents, in their quest to accomplish and
optimise for certain concrete end-in-itself goals,”
were touted to value self-preservation and work
strategically towards ensuring their own survival. 8
Commencing in the early 2000s, the conversations
around mitigating the potential protracted effects of
superintelligence and futuristic propositions related
to Artificial General Intelligence (AGI)9 marked the
beginning of Al safety as a formal discipline. *°

Existential
risks .
Evolution of
Al Safety
Misalignment | Systemic !
with norms risks J

y,

Figure 1: Evolution of AI Safety: Risks

Operationalising Al Safety: A Lifecycle Approach 5



i. Addressing existential/
catastrophic risks

By the mid-2000s, the prominent objective of the Al
safety domain was to ensure that the use of Al
machines did not culminate in harmful outcomes
while contributing positively to the progress of the
human race.* This period was followed by the
beginnings of a growing consensus among a section of
Al researchers that advanced AI would likely become
a major source of existential risk.? The capability of
Al tools to deliver critical information for designing
weapons of mass destruction, launching cyberattacks,
and affecting political stability through manipulation
and misinformation are some of the examples cited by
recent literature to reinforce focus on existential
risks.’3 The narrative around AI potentially
culminating in existential and catastrophic risks to
humankind remains a heavily debated topic in
research circles and continues to be instrumental in
shaping the public discourse on Al safety. 4 15

The inflated projections around the inevitability of
AGI-led apocalypse and the potential gains stemming
from AI’s transformative potential have also garnered
interest and support from a movement, popularly
termed as effective altruism. ® The effective altruism
community prioritises the promotion of a research
agenda on technical AI safety, thereby steering the
focus away from the consequences of an increasing
corporate power asymmetry. 7 Extensively funded by



tech billionaire donors and primarily driven by
Silicon Valley AI companies, this ideology has been
instrumental in racing to create precarious Al
systems under the garb of Al safety. For instance,
under the pretext of developing AI applications
beneficial to humankind, tech companies have been
contributing to unchecked risks by prioritising rapid
deployment over rigorous safety testing, and
obfuscating ambitions of securing supremacy in the
global race for AGI.*® 1 This heightened and insular
focus on mitigation of Al-fuelled techno-
utopianism 2° (a claim largely unfounded) associated
with emerging Al also distracts and takes the
attention away from genuine immediate harms
warranting attention. 2* One of the most prominent
focus areas for the effective altruism community also
includes addressing technical alignment issues,
identified as one of the many factors potentially
leading to catastrophic risks to humanity. 22

1. The alignment problem

Al systems persistently encounter challenges related
to alignment - a concept dating back to the 1960s, and
which has emerged as one of the prominent sub-fields
in the field of computer science.23 The alignment
problem translates as the inability of Al systems to
internalise, optimise and represent the values and
objectives defined by the human developer. 24
Ensuring that an Al system captures human values
and norms, while understanding and behaving as
expected, also forms a crucial objective in the field of



Al safety. Mis-specification of subgoals and
misaligned objectives during the training and
development of an AI system can prove risky,
especially in scenarios where a system begins to
pursue objectives outside the scope of its human-
defined mission. 25 Reward hacking highlights one
such instance of misalignment in AI systems, where
in its quest to achieve a higher reward (separate from
the intended reward outcomes), an AI agent is
observed to resort to shortcuts by exploiting flaws in
the design of the reward function. 2¢ Additionally, the
complexity and subjectivity of human values also
presents a significant hurdle for aligning AI in the
absence of a universal agreement on the set of values
that should be encoded into AI systems. 27

iii. The need for a Socio-technical
approach

Technical literature on AI safety takes a narrow
approach while enumerating the objectives under the
discipline of AI safety. It broadly categorises
challenges to accuracy, robustness, reliability and
security as the crucial components under this field. 28
This framework further lends credence to the
assertion that AI safety efforts are exclusively
technical. However, contemporary studies on Al
safety highlight how the discipline also forms an
intrinsic part of the larger structure of trust and
responsibility, 29 and comprises ethical
considerations including fairness, accountability,



data privacy, bias mitigation and transparency, which
are some of the key tenets of Safe AI development. 3°
Algorithmic fairness is defined as a social construct,
involving designing solutions to address the systemic
harm that algorithms can inflict disproportionately
on specific groups.3* While robustness is
characterised as a model's resilience against adverse
circumstances,32 the reliability of a model is
measured in terms of its consistency of outputs and
reduction in system failures. 33 Model transparency is
the property that enables understanding the inner
workings of a model, a crucial facet due to an Al
system’s inherent “black-box” nature. Explainability,
on the other hand, aids in enhancing clarity on the
rationale behind the decision-making process
employed by an Al system. 34

Further, the interdependencies between technical
design decisions, system deployment contexts, and
existing social hierarchies have also contributed to
how technical systems shape and in return are shaped
by societal power structures.35 This perspective
necessitates reframing traditional approaches to
facilitate better management of risks under the
domain of safety by adopting an alternative paradigm
rooted in socio-technical discourse.

The adoption of AI has culminated in broader
systemic risks3® across the AI lifecycle due to
intermingling with real-world social, political, and
cultural dynamics. This has in turn contributed to
structural harms being embedded right from the



training stage of an AI system. The utilisation of
underrepresentative datasets and the consequent
effects of algorithmic bias have also resulted in
skewed outcomes, discrimination, privacy breaches 37
and copyright violations.3® The deployment of
algorithmic decision-making for public welfare has
also led to concerns of the amplification of centralised
forms of state and private control. 39 Additionally, the
widespread integration of AI across different
applications has led to labour market disruption, 4°
and human rights concerns owing to the harsh,
inequitable and extractive working conditions under
which the data annotators are made to operate. 4 This
large-scale deployment of Al also carries substantial
environmental implications, chiefly driven by the
energy demands of Al infrastructure such as data
centres and powerful transformer models. 42 All these
contribute to an expanding carbon footprint,43 44
negatively impacting the living conditions of
vulnerable communities inhabiting the surrounding
areas. 45 46

Given that the array of risks falling within the ambit
of AI clearly encompasses systemic risks and
unforeseen downstream harms to society, safety
cannot be conceptualised to hinge on purely technical
approaches and emphasis on combating existential
risks. Interdisciplinary scholarship also highlights
how the domain of Al safety cannot solely depend on
optimising technical design and focusing on the
model property of an Al system 4 Emphasising that



safety of an Al system is also largely contingent upon
its deployment context, concerned stakeholders and
institutional environment, research points out the
significance of embracing a socio-technical framing to
Al safety.48 A sociotechnical approach understands
that the efficacy and safety associated with any
technology is always the result of not just technical
features but also larger societal forces, and takes into
consideration factors such as institutional
governance, human labour and social conditions. 49
Taking a socio-technical approach can therefore
enable the creation of solutions embedded with
societal insights by ensuring stakeholder engagement
from diverse domains. Opting for participatory
models involving impacted communities can also
support Al systems in functioning effectively by
minimising reliance on technological workarounds
alone. 50 5!

The field of AI safety needs to be broadly
conceptualised to incorporate a holistic framework
encompassing a wide spectrum of harms and a
diverse range of values and approaches to address
these harms effectively. 52 Research has expanded the
scope of this academic discipline by necessitating
consideration of not just technical aspects such as
model alignment, or research on existential risks, but
also recommendations for regulating the governance
of AI for mitigating social harms. 53 In other words, Al
safety research must accord equal significance to the
full spectrum of Al-generated risks, encompassing



both technical issues (such as unsafe exploration 54
and distributional shift55) and social harms
(including bias and discrimination) to examine how it
engages with people, systems and processes.5° The
notion of Al safety must be contestable for it to be
conceptualized and reinterpreted by different
communities in accordance with their goals and
aspirations. 57

D. How is Al Safety defined?

Al safety is a nascent, emerging and conceptually
disputed field open to various interpretations by
different stakeholders. It has been defined as a
research discipline entrusted with the prevention or
minimisation of risks emanating from the
development and implementation of Al systems. 58 In
the technical sense, it has also been described as an
area investigating causes of unanticipated outcomes
in AI systems>39 and conducting research focused on
optimising the benefits of Al integration. % This field
also encompasses mitigation of accidental risks
resulting from unforeseen divergence of Al systems
from their intended behaviour. %
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Delineation and convergence within the
fields of AI ethics, AI safety and AI
security

Literature on Al attempts to delineate Al safety with
two closely related but distinct fields - Al ethics and
Al security - depending on their core functions and
the category of harms these fields seek to address. The
field of AI ethics is well-established and has been
defined as a collection of principles, values, and
methods that applies accepted standards of morality
to the development and application of Al 2 Principles
including fairness, transparency, explainability and
privacy have been categorised under the ambit of Al
ethics. This discipline typically concerns itself with
mitigation of present-day harms®  (bias,
discrimination and privacy invasion, for instance)
momentarily plaguing algorithmic systems.% Al
safety, on the other hand, has been ostensibly linked
with the design of interventions aimed at resolving
prospective challenges (strengthening robustness of a
system, for instance) inherent in evolving algorithmic
systems. %5

Research also points to a lack of consensus in the
category of risks falling under the ambit of Al safety
and Al security. Al security is a characteristic of a
system for exhibiting resilience against malicious
attacks on the system components and operations,
and ensuring that the integrity of the system is
preserved in the face of adversarial actions.%

Operationalising Al Safety: A Lifecycle Approach 13
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According to scholarly analyses, AI safety must
typically concern itself with unintended or accidental
harms arising out of AI systems, such as
misalignment, design flaws and embedded biases,
while AI security is purportedly entrusted with the
aim to build resilience in Al systems against malicious
actors and intentional adversarial acts (jailbreaking,
for instance). 67

Al Security

.
AI Ethlcs Exhibiting resilience
Collection of principles, against malicious attacks
values, and methods and ensuring the system
applying accepted integrity is preserved in the
standards of morality to the face of adversarial actions.
development and Responsible design

application of Al. Prevention of harm

Mitigating bias
Human oversight

Al Safety

Concerned with accidental
harms from Al systems,
such as misalignment and
embedded biases.

Figure 2: Delineation and convergence within the fields of AI ethics, Al
safety and Al security
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However, recent discourse on Al emphasises the
necessity of integrating these disciplines given their
overlapping boundaries and challenges in delineating
both risks and solutions, to more effectively mitigate
the contextual harms posed by Al systems. 68 69

E. Status quo and relevance for the
Global South

The meteoric popularity and large-scale deployment
of LLM applications has also acted as a catalyst for
prompting urgent discussions amongst jurisdictions
and policymakers worldwide around developing the
field of Al safety. 7° The first Al Summit hosted by the
United Kingdom at Bletchley Park in November 2023
was instrumental in ushering the issue of Al safety
and the risks posed by frontier Al to the forefront. 7
This Summit also led to the establishment of the first
Al Safety Institute72 (AISI) in the UK, which was
followed by multiple jurisdictions launching their
own AISIs.73 The International AI Safety Report
released by the UK AISI also attempted to define and
widen the scope of Al safety by including the
mitigation of intentional risks, malicious uses and
harms resulting from deepfake exploitation,
dissemination of misinformation and adversarial
attacks.”# However, despite the initial two AI
Summits at Bletchley Park and Seoul heavily focusing
on the safety aspect, there was a noticeable shift and
expansion of focus at the Al Summit held at Paris
earlier in 2025.75 7© The emphasis in some
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jurisdictions has also gradually shifted from safety to
addressing potential threats to national security,””
including cybersecurity risks and implications from
development of biological warfare.” Another
noticeable shift in the AI discourse is the growing
emphasis on driving AI innovation, with safety
measures considered a roadblock by some
governments in achieving global AI leadership.79
With the nature and gravity of harms resulting from
Al use compounding at exponential rates, it is crucial
that AI safety receives the critical level of importance
it warrants.

The Global South populations remain exposed to a
distinct set of Al-related risks, ranging from
fragmentation of local labour markets to the
perpetuation of existing social biases.8¢ 8t These
vulnerabilities are further amplified by a dearth of
indigenous datasets, algorithmic bias and inadequate
digital infrastructure, exposing the populations to
greater systemic risks often neglected by global
frameworks on AI safety.82 It becomes critical,
therefore, to develop effective practices and
mechanisms for risk mitigation contextualised to
address the unique realities of the Global South.
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Section 11

AI Risk and Governance: A
Lifecycle Approach

Section II of the report explores how Al safety can be
operationalised through targeted interventions
across the Al lifecycle, encompassing inception and
planning, data collection and preparation, model
design and training, verification and validation, and
deployment and post-deployment. The stages of a
lifecycle, and the associated risks and mitigation
measures depend on the size, scale and scope of the
Al system. Key safety risks are examined at each
stage, such as adversarial vulnerability in the model
design and training stage, and model degradation in
the post deployment stage. The section also maps
governance measures and notable technical
interventions at each stage, including robust auditing
procedures, red-teaming, and oversight mechanisms
to highlight mitigation efforts and exercises.
Additionally, this section highlights existing
regulatory practices as part of mitigation efforts
where relevant. Highlighting major considerations
for the Global South underlines the research and is
discussed at the end of every stage of the lifecycle.
These insights for the Global South discuss
emphasising equitable access, the necessity for
context-specific adaptations, and inclusive and
expansive training data, to prevent exacerbating
regional inequalities.
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Adopting a lifecycle approach allows stakeholders to
study and manage the sequential progression of
decisions and tasks leading up to and including the
deployment of Al solutions. 83 Lifecycle management
includes evaluations of the response time, quality,
fairness and explainability, among others, of Al
systems in context.84 Key factors contributing to
risks, namely privacy, cybersecurity, trust,
interpretability, explainability, robustness, usability
and wider social implications can be accounted for,
and managed, given the comprehensive nature of a
lifecycle approach. 85

Model Design
and Training
Data Collection Verification
and Preparation & and Validation
Be [0)
'y =2
Inception and Deployment &
Planning Q @ Post-Deployment

Figure 3: Stages of the AI Lifecycle

Another valuable addition of observing Al systems
through this lens is the ease of identifying key actors
involved across various stages, like data scientists,
engineers, IT managers and compliance teams.
Recognising these human parties in the lifecycle is
vital to ensure appropriate allocation of
responsibilities and adequate oversight of the stages,
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thereby supporting transparency and traceability
efforts during the development and deployment. 8¢
Given the high number of actors involved, assigning
specific roles and responsibilities is necessary for
accountability, especially to address concerns during
failures or breaches. By breaking down the process
into a lifecycle and also identifying responsible actors,
we can visualise a holistic image of the AI system in
order to assess how and by whom safety is
implemented. This report acknowledges the
importance of key actors, but does not granularly
approach risk and mitigation measures through this
sole lens.

Model developers, also known as the architects, lay
the foundational capabilities and conceptualise the Al
system and its behaviours. 87 They build the models,
crucially contributing to the potential output and its
impact. System deployers are the party bridging the
gap between the abilities of an Al system and its real-
world application. 88 They actively customise and
operationalise the system, depending on its abilities
and uses within a targeted industry. Finally, the users
interact with the system and uniquely introduce new
information, influencing the real-world performance
of the AI tool. They are most impacted by the Al
system, and hence, clear explanations and directions
on the performance and impact of the tool should be
made available to them.

Beyond this operationalisation, two other human
parties are also involved with the AI lifecycle.
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Theorists are accountable for developing and
advancing Al theory through a technical lens, and
typically belong to academic or industrial research
settings. 89 Ethicists are concerned with the principles
of safe AI systems and include policymakers,
commentators and critics from multiple disciplines
like academia, law, journalism, economics and
politics. % They are concerned with research beyond
the technical qualities, and evaluate AI systems in
light of external auditability, societal impact and
wider legal compliance.

Visualising the development and deployment of an Al
system as an iterative lifecycle with built in testing,
verification, and feedback methodologies allows for a
process of continuous improvement. Distinct risks
emerge at different stages of the lifecycle,
necessitating tailored interventions to address them
proactively. Biases and privacy violations often
manifest during data collection and processing, while
deception arises during model training.%2 In post-
deployment, issues like unintended societal harms or
jailbreaking  vulnerabilities @ are  revealed. %
Corresponding safety measures include technical
safeguards like careful data curation, adversarial
robustness testing in the early stages, and governance
tools such as auditing and regulatory sandboxes in the
later stages. Breaking down risks and mitigation
measures via stages proves useful by enabling
targeted, scalable mechanisms that provide oversight,
facilitate accountability and prevent compounded
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issues that may only manifest once the AI system is
released to its context-specific users.9 However,
there are limitations to this approach. Al systems vary
in their model design (foundational models as
opposed to deployed applications, low-risk vs high-
risk systems, etc.), which complicate generalised
categorisation of stages, risks and mitigation
measures. % Rapid technological advancements can
modify these classifications further, especially given
the adaptive nature of Al models. The stages overlap
and are interconnected, defying neat delineations in
how risks can present. This report aims to provide a
broad mapping that can be referential in developing
detailed and comprehensive studies as the research in
this field, especially in the Global South, continues to
grow.
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These following two sub-sections provide a brief
overview of the governance frameworks and technical
safety measures related to Al safety, which we will
explore in greater detail subsequently.

Governance frameworks for Al safety

Globally, various governance frameworks are being
established to address and contain harms arising
from the proliferation of Al. Voluntary standards, in
the form of ISO/IEC 42001:2023 and the Risk
Management Framework (RMF) conceived by the
National Institute of Science and Technology (NIST)
have proven useful in proposing mechanisms to
organisations for internal governance and
undertaking effective risk oversight procedures. %
The NIST Risk Management Framework (RMF)
provides a flexible mechanism for organisations
involved in the development and use of Al models to
identify, evaluate and effectively incorporate risk
mitigation measures for harms arising through the
entire lifecycle. 97 The Organisation for Economic Co-
operation and Development (OECD) principles on Al
also necessitate ensuring robustness, security and
safety in the functioning of AI systems. These
principles also recommend the creation of adequate
safeguards across all the stages for prevention of
unforeseen risks and unintended behaviour on the
part of AI. 98

The EU AI Act proposes a risk-based approach to Al
regulation and imposes stringent requirements on



developers of high-risk AI systems, which include
conducting mandatory periodic risk assessments. 99
California's recently enacted Al safety legislation - the
Transparency in Frontier Artificial Intelligence Act
(SB 53), also implements a comprehensive
governance framework by mandating transparency
and disclosure requirements from developers of large
frontier AI models regarding the safety framework
followed by them. *°° The legislation also provides for
whistleblower protections for workers of companies
involved in model development and necessitates
immediate reporting of a ‘critical safety incident’. 101

Technical safety measures under the
realm of AI Safety

Al safety is also interpreted as a specialised domain
within the ambit of system safety engineering, which
enables investigating and offering solutions to Al-
generated social and ethical harms through the
application of foundational safety engineering
principles. 122 Safety engineering prescribes taking a
‘safety-by-design’ approach at the outset, enabling
better risk management and avoiding retrofitting
safeguards until after the risk becomes apparent post
the model deployment. 13 Designing technical safety
measures, therefore, forms an integral part of
ensuring the safety of Al systems and withstanding
adversarial attacks in the form of data poisoning,
jailbreaks and prompt injections.°4 Enhancing
system safety also necessitates considering the



behaviour of the numerous components of the Al
system working in unison. This can facilitate crafting
interventions throughout the system lifecycle in the
broader context of its functioning and the
environment under which it operates. 1°5 Dissecting
the different stages of the Al lifecycle can also prove
valuable in designing effective mitigation strategies to
contain the downstream risks associated with Al
implementation. A multitude of safety techniques
including employing anomaly detection and
adversarial robustness (such as red teaming) to
ascertain malicious use °® have been developed to
minimise the risks arising out of the various stages of
the AI lifecycle, which shall be dealt with
subsequently.
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A. Inception and Planning

The inception and planning stage is the earliest stage
of the Al lifecycle. This stage involves context setting,
identifying objectives and purposes that involves
defining use and constraints or perceiving risks such
as identifying affected communities. These tasks are
critical for assessing feasibility and foreseeable
misuses, and setting the accountability, oversight,
and risk-management structures that will guide the
entire lifecycle. 107 This stage is closely tied to NIST’s
AI RMF “Govern” and “Map” functions. The “Govern”
function relates to outlining processes for the Al
lifecycle to identify and account for foreseeable risks
that may arise. This function involves steps such as
documenting legal requirements and establishing
accountability structures. °8 The “Govern” function is
supported by the “Map” function which provides
further context on the outlining of the AI lifecycle
through steps such as mapping impacts for
individuals, groups, communities and society. 1°9 The
inception stage plays a critical role in determining
and accounting for an Al system’s long-term safety
and social impacts because it defines the trajectory of
the system.

i. Identified Risks

During the inception and planning stage, Al safety
risks may emerge when problem definitions,
objectives, potential risks and contextual parameters
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are insufficiently examined and articulated. *© The
absence of meaningful engagement with relevant
stakeholders and affected communities further
compounds these risks by obscuring local concerns,
domain constraints, and lived-experience insights.
Early risks also stem from incomplete anticipation of
failure modes, 12 security threats, and downstream
impacts on individuals, groups, and institutions. '3

ii. Governance Measures

These challenges can be addressed through rigorous
purpose-and context-definition practices, structured
stakeholder and community consultation, systematic
early-stage risk identification, threat modelling and
impact assessment processes, and clear allocation of
governance roles and accountability mechanisms. It
is relevant to note that while frameworks often
recommend some of these mechanisms to be carried
out across the Al lifecycle, it is critical that they are
employed at the outset to prevent irreversible safety
harms at later stages. 14

Some of the key governance mechanisms under the
inception and planning stage include purpose
specification and context definition mechanisms,
structured stakeholder and community engagement,
early risk identification, and governance and
accountability allocation.
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Governance measures af the
inception stage of an AI model

Purpose Specification &
Context Definition Mechanisms

Structured Stakeholder and
Community Engagement

Early Risk Identification

Governance and Accountability

Figure 4: Inception Stage of AI Model: Governance measures

Purpose Specification and Context
Definition Mechanisms

It is imperative to outline the purpose and set the
context at the beginning of the AI lifecycle. This
includes delineating and defining the AI system’s
purpose, intended use, non-intended uses,
operational context, and constraints before
development begins. 15 Doing so is relevant because
several challenges, particularly at the design and
training stage and at deployment, arise from
misalignment between the objectives of the Al
systems and the priorities of the designer, discussed
in subsequent sections.
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The ‘Map’ Function within the NIST AI RMF
recognises the need to outline and define the purpose
and context of the AI system, by specifying the
environmental, organisational, and functional
conditions that shape how risks arising from the Al
system should be understood. These conditions relate
to practices like documenting the organisation’s
mission and relevant goals, ' intended purposes,
anticipated beneficial use cases. It can also relate to
contextual parameters relevant while deploying an Al
system, like norms, and legal frameworks. 17

Structured Stakeholder and Community
Engagement

Through this mechanism, AI developers and
deployers must establish formal processes to engage
with diverse stakeholders in consultative processes.
These stakeholders may include users, workers,
citizens, domain experts, academics, civil society,
grassroots  organisations and  marginalised
communities who will also be impacted by the use of
AT or whose data has been used to train models. Early
engagement reduces downstream fairness risks,
misalignment with societal values, and contextual
misalignment. 118

Identification and engagement with stakeholders is
an integral aspect of the ‘Map’ function under the
NIST AI RMF.® This framework articulates how
engagement with relevant stakeholders and
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communication towards shared understanding can
support Al  developers and deployers in
understanding the likelihood and magnitude of
potential impact. 12°

Early Risk Identification

Organisations must identify risks and impacts that
may potentially arise from the AI system through
threat modelling and impact assessments. While it is
critical to evaluate the system for potential risks
throughout the lifecycle, it is particularly imperative
for these assessments to be conducted at a
foundational stage.

For instance, the ‘Map’ and ‘Manage’ functions of the
NIST AI RMF explicitly require early identification of
foreseeable misuse and safety risks. *>* Similarly, the
EU AI Act requires risk management systems to be
established and maintained for high-risk Al
systems.?> These systems comprise both risk
assessment as well as risk management. Risk
assessment may be carried out at the inception and
planning stage. However, under the EU AI Act, the
risks articulated correspond to those which may be
mitigated during the development or design stage, or
“when  adequate technical information is
provided.” 123 As a result, this report discusses the
operationalisation of the risk management system
under the EU AI Act under the model design and
training stage.
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The EU AI Act stipulates the steps involved in the
implementation of the risk management system to
include identifying and analysing risks which may
either be known or reasonably foreseen, particularly
in terms of impact on health, safety, or fundamental
rights. 24 The Guidance for Risk Management of
Artificial Intelligence systems (“Guidance”) specifies
that risk identification includes identifying the
sources of risk, and potential areas which the
deployment of the AI system may impact, in order to
create a comprehensive risk register. 25 The Guidance
states that risk analysis involves examining the
nature, sources, likelihood, and potential
consequences of the identified risks. 126

Subsequently, the AI Act requires that these risks are
to be estimated and evaluated 7 prior to adopting
appropriate and targeted risk management measures
to mitigate the risks identified above for this stage. 128
The Guidance states that risk evaluation involves
comparing the identified risks with the risk criteria,
risk appetite and tolerance to determine whether an
identified risk is acceptable. 129

Governance and Accountability Allocation

This process involves defining and allocating clear
roles for stakeholders involved across the Al lifecycle,
including the AI owner, deployers, project manager,
risk officer, human-oversight authorities, etc. This is
significant because systemic risk often occurs due to
failures and ambiguity in accountability. When
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stakeholders are unclear about the responsibility
allocated to them, this can give rise to unsafe
decision-making, governance bottlenecks, and
organisational blind spots. 13°

This has been recognised by the EU AI Act, which
details the obligations which must be allocated among
providers, 13! deployers, 132 importers, 133
distributors 134 and other stakeholders. While it is not
necessary to fulfil all the obligations at the inception
stage, it is critical to document and make the relevant
stakeholders aware of their corresponding
responsibilities at this stage to prevent safety harms
arising subsequently.

Similarly, the ‘Govern’ function under the NIST Al
RMF emphasises early allocation of accountability
structures within AI systems.35 This includes
practices like establishing, documenting and
communicating clear, well-defined roles,
responsibilities, and communication pathways
relating to mapping, measuring, and managing Al
risks, in order to support the systematic
identification, assessment, and mitigation of AI-
related risks. 136

iii. Considerations for the Global South

Multinational companies typically operate out of
multiple and diverse social contexts, which can
present distinct challenges in how they strategise in
terms of critical decisions. This is particularly
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relevant for markets with “cultural distance,” where
there is a difference in terms of cultural values. In
such instances, there is often greater transfer of
practices from the “home country”, which in most
cases relates to the Global North. 37 This can often
result in limited incentives for some of the biggest
global foundational model developers and deployers
in key sectors such as health, recruitment and
education towards investing in understanding local
languages, cultural contexts, demographies, and
power structures in non-priority markets in the
Global South. Consequently, this may result in an
underrepresentation of diverse needs. For instance,
techno-linguistic bias favouring dominant languages
from the Global North being prioritised in a manner
that hinders Al systems from being able to correctly
represent concepts from other communities. 138

Often, due to the above factors, there is limited
participation of users from the Global South and
marginalised communities within these jurisdictions
in developing and co-designing AI models at the
inception stage.39 It is also critical to take into
account the dominance of AI players established in
the Global North in developing Al infrastructure, and
its implications on data sovereignty, 4° individual
privacy and communities’ rights over their cultural
and linguistic resources. 4* This hegemony also risks
technological dependency of the Global South on the
Global North, a loss of local autonomy, and may
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overlook local needs, languages, and social norms in
the inception and planning of Al systems. 142

These challenges are also often likely to be
exacerbated due to several Global South jurisdictions
lacking effective governance frameworks such as data
protection and AI safety regulations and industry
standards. 43

B. Data Collection and Preparation

Data collection is the stage of the Al lifecycle where
raw data is acquired for training, validating, and
testing an Al model. 44 Data collection can involve
data acquisition, where new datasets may be
discovered or generated. Data discovery involves
extrapolating insights from existing datasets by
identifying patterns and trends in data, which can
improve security and inform decision-making. 145
Data generation refers to the process where synthetic
data is artificially generated through computer
simulations or generative models to supplement
“real-world data” in a cost-effective manner. 146

Data preparation is the stage of the Al lifecycle where
the raw data is processed and refined before further
stages. 47 This process involves improving upon or
augmenting datasets or making them more
representative by improving the quality of existing
data to be more consistent, accurate and reliable. 148
The quality of datasets is often improved by handling
missing data or values 49 or providing additional
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context to raw data through data labelling and
annotation. 15°

Datasets may also be made more representative by
ensuring diversity of data, either by replacing existing
data that may cause bias,’s* or increasing
representation of underrepresented data samples in
datasets. 152

i. Identified Risks

Several risks can arise at the data collection and
preparation stage.

Transparency and explainability

A significant risk that may arise is a lack of
transparency and explainability for wusers and
deployers. 153 This is due to limited documentation of
how processes in the data collection and preparation
stage are employed. These processes include
techniques such as data augmentation (where the size
of the dataset is increased using synthetically
generated data), and data repurposing (where data
collected for a certain purpose is reused to train Al
models to identify patterns for a different
purpose). 54 These limitations in transparency may
also contribute to challenges for users and deployers
in identifying threats relating to adversarial
manipulation, 55 which presents challenges in terms
of determining accountability for harms stemming
from a model’s outputs.5® Moreover, a lack of
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transparency due to limited documentation of the
sources and nature of data collection may also give
rise to certain concerns. This may be due to the
quality of data collected and used for the AT model
being ‘bad.” For instance, misinformation detection
tools developed wusing datasets drawing upon
misinformation and disinformation present on the
Internet, may be less accurate. This is because these
tools may assume the misinformation they are
trained on to be true. 57 In certain cases, there is also
the risk of the nature of data collection being bad, as
opposed to the data itself; for instance, where data
has been scraped in an unauthorised manner by web
crawlers. 158

Data privacy violations

There may also be concerns of data privacy violations.
These may arise in the absence of informed consent,
and limited adherence to data protection
principles. 59

Bias

AI models may sometimes exhibit biased behaviours
and produce inequitable and unfair outcomes. One
form of such bias could be statistical bias, which can
arise due to particular demographic groups being
underrepresented in training datasets.®° For
instance, demographic underrepresentation in
datasets used for computer vision models can
produce higher error rates for darker-skinned
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individuals as compared to lighter-skinned
individuals. ¢ Limited obligations for explainability
and transparency on prominent AI systems with
regard to information on datasets can also result in
users being unaware of the implications of potential
biases. 162

Another form of bias could include societal bias,
relating to structural inequalities in society, which are
reflected through the data that has been collected. For
instance, predictive Al models which have been
trained to identify and reproduce existing patterns in
datasets may replicate prevalent societal bias
surrounding male and female representation in
different fields like medicine, engineering, etc. 13

Risks in data labelling

Data labelling processes can often give rise to fairness
risks. Data labelling refers to identifying and
providing context to raw data, such as images and
videos for a machine learning model. 4 This process
can often fail to account for complexities in data. For
instance, emotion recognition systems can create
overly simplistic representations of complex humans,
failing to capture local contexts of expressing
emotions, and other situational nuances. 05 This
could consequently produce unfair outcomes where
an individual is incorrectly profiled for mental health
concerns, for instance. 16
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Additionally, data labelling may also present risks in
allocative decisions due to underrepresentation of
data, or can reinforce societal biases due to
misrepresentation in labels. For instance, the UK ICO
illustrates how common practices like uniform
sampling from the training dataset, may result in
unfairness for underrepresented communities. This is
because uniform sampling, where a data point is
randomly selected from a dataset, is less likely to
present a data point of an underrepresented
community, simply due to less data being available
about that community. 67

ii. Governance Measures

The above identified risks are fundamentally tied to
the data that models are trained on, %8 and certain
governance measures like record keeping and audits
can be effective in accounting for these risks at the
data collection and preparation stage.

Governance measures at the data
collection and preparation stage

Data Provenance

Privacy Protections

Figure 5: Collection and Preparation Stage of Al Model: Governance
Measures
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Data Provenance

Data provenance refers to the detailed record of the
origin, history, and transformation of data inputted at
the data collection stage. ' This mechanism helps
ensure that the data used to train or test Al systems is
traceable and trustworthy - for instance, by verifying
the data collected, the creators of the data, and
records and histories of how the data has been
modified. This can consequently help verify the
authenticity and consent associated with the data. 170

There are several mechanisms and technical
measures through which data provenance can be
operationalised. This includes auditable chains,
which identify the origin, owner, validation, change
points, and destination within the dataset. Some of
the key artefacts underpinning these auditable chains
include a registry of sources, end-to-end maps tracing
data touchpoints from its origin across various
processes and transformations, and detailed logs
mapping outcomes to responsible decision-
makers. 7! In the absence of uniform and universally
accepted standards or frameworks for data
provenance, several researchers have also proposed
documentation standards like datasheets,72 data
statements, 173 and data cards. 174

Regulatory provisions can also support AI model
developers in adhering to principles of transparency,
robustness and fairness through data provenance.
For instance, the EU AI Act requires providers of
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general-purpose Al models to develop a “sufficiently
detailed” summary of the data used to train the Al
model. This summary must be in accordance with a
template provided by the AI Office, and must be made
publicly available. 175

NIST AI Risk Management Framework 1.0 also
underscored documentation, traceability, and data
provenance as integral to trustworthy AI. Within its
‘Map’ and ‘Govern’ functions, the framework calls for
systematic recording of information related to data
collection, selection, system design, and testing. This
documentation is intended to enable accountability,
transparency, and oversight throughout the AI
system lifecycle, including the data collection
stage. 176

Canada’s Voluntary Code of Conduct on the
Responsible Development and Management of
Advanced Generative Al Systems calls on model
developers to publish training data descriptions. This
includes data about the types of training data used to
develop the AI system, as well as risk identification
and mitigation measures. 77

Moreover, a Checklist for AI Auditing, commissioned
by the EU Data Protection Board, also recommended
certain factors that could be accounted for while the
training data is being audited. 78 This could include
examining whether data sources have been
documented, and whether input data sets, data use
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and intermediate data, and output data can be
traced. 179

Privacy Protections

Data provenance is a significant governance
mechanism to support accountability and
transparency within the data collection and
preparation stage. However, it is imperative that such
data provenance, as well as data collection and
preparation more broadly, be done in accordance
with data protection frameworks.

For instance, the General Data Protection
Regulation 180 181182183184 _ the provision specifically
articulates that producers should be encouraged to
account for data protection rights while developing
products and services which process personal data.

The Guidelines on the interplay between the EU Data
Protection Regulation and the Artificial Intelligence
Act 85 are slated to be released in 2026, according to
the European Data Protection Supervisor. 8¢
However, literature already points to the existing
impact of the GDPR on Al systems, including the
significance of principles like data minimisation. 187 A
study by the Panel for the Future of Science and
Technology submitted to the European Parliament
contended that AI systems can integrate data
processing requirements and safeguards established
by the GDPR. 188
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The study reiterated the need for mechanisms such as
pseudonymisation with respect to data collected for
developing the AI systems. The study also
recommended identifying distinctions between the
use of personal data for the purpose of developing a
training dataset for AI systems, which involves
broader correlations amongst individuals, as
compared to personal data being used to profile and
make decisions about individuals.®9 This can
support the principle of purpose limitation provided
under the GDPR by limiting data processing to the
purpose for which it may have been collected. The
study also recommended establishing deterrents
against institutions that intentionally disregard the
interests of data subjects and thereby exploit their
trust. 190

Research also points to consent registration as a
technical measure that provides clarity regarding
whether creators have consented to the collection and
storage of data, and also allows people to grant,
withdraw, or negotiate consent. 19

The Checklist for AI Auditing, commissioned by the
EU Data Protection Board, also recommended
ascertaining whether data sources and the method of
collection contravene data protection principles
under the GDPR.92 The recommendations also
propose audits to examine whether the process of
data collection followed the approach of privacy by
design, as laid down under the data protection
principles under the GDPR. 193
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Data governance and management best
practices towards Fairness and Bias
Mitigation

The EU AI Act requires that training, validation and
testing data sets shall be relevant, sufficiently
representative, and account for geographical and
contextual characteristics. 94

The UK Information Commissioner’s Office (“UK
ICO”) provides implementational direction for this
provision through its guidance on ensuring dataset
fairness, which specifies certain factors to be
considered and demonstrated to ensure the Al system
is trained and tested on datasets that are
representative, relevant, accurate, and
generalisable. 95 These factors include designing
datasets to be representative of relevant populations
and communities by collecting sufficient data (both in
terms of quantity and quality). 19¢ The guidance also
acknowledges the significance of reliability and
impartiality in data collection within the above factors
by recommending that data be assessed, recorded and
sourced through “sound collection methods” in an
up-to-date and accurate manner. 197

The UK ICO takes into consideration the various
sources of bias in datasets and Al systems (including
data collected through third parties).

Bias from external datasets
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The UK ICO emphasises the need to assess risks of
bias particularly when organisations procure datasets
from other organisations through processes like data
sharing.198 For instance, the UK ICO highlights how
selection biases in sampling and measurement may
arise when non-representative external datasets are
integrated with data collected directly by
organisations themselves.99

Bias mitigation in data labelling/annotation

Harms can arise from misrepresentation or
underrepresentation of certain data points in data
labelling and annotation. This can be mitigated by
implicit bias training to equip Al companies with an
understanding of how underrepresentation and
misrepresentation may impact the decision-making
of the AI system. Participatory design through
inclusion of underrepresented communities in the
labelling process can be wuseful in helping
organisations formulate inclusive labelling criteria
and protocols.2°° For instance, the Uli dataset for
automated detection of hate speech and gendered
abuse in Hindi, Tamil and Indian English employs a
participatory approach by selecting annotators who
identify as women or members of the LGBTQIA+
community in South Asia.20!

Bias mitigation through dataset
modification
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Bias mitigation at the pre-processing stage can also
involve modifying datasets to either remove data that
may result in biased outcomes and discrimination, or
correct an imbalanced dataset by increasing
representation of communities that were previously
underrepresented.2°2

During the data collection process, every data point
assumes an equal weight, which can lead to
marginalised communities remaining
underrepresented in datasets as well.2°3 One way to
address aggregation bias that may arise due to certain
groups being underrepresented includes reweighting
data points during data preparation to balance the
representation. For instance, data was reweighted to
avoid unfair outcomes in a clinical prediction model
for postpartum depression (PPD). The model had
been trained on potentially biased data and was
diagnosing higher numbers of white women with
PPD, contrary to medical literature pointing to
evidence of higher prevalence of PPD among women
from marginalised communities. In this case,
reweighting data mitigated bias by reducing the effect
of the biased data point (such as race) in prediction by
removing it as a characteristic.204

Similarly, during the data preparation process, data
labelling can often fail to account for structural and
societal challenges and can perpetuate bias and
discrimination.2%5 These structural inequalities can
be accounted for by changing data labels, wherein

Operationalising AI Safety: A Lifecycle Approach 44



Centre for Communication Governance

labels can be modified on the basis of algorithmic
fairness metrics to mitigate risk against communities
most vulnerable to such discrimination.206

Other bias mitigation strategies can include
mechanisms such as data visualisations, which chart
changes in training data’s distribution patterns to
indicate potential bias within the corresponding
dataset.207

iii. Considerations for the Global South

Some of the risks identified in this stage may pose
specific challenges when an Al system is developed or
deployed in the Global South. Obtaining informed
consent in data collection can often be a challenge due
to linguistic diversity impeding the accessibility of
transparency and explainability disclosures for
individuals whose data is being collected.208

A study on low-resource government health systems
in Zanzibar provides insights into how several
patients were unaware about the individuals
accessing their data or why it was being collected.2°9
These issues arose primarily due to challenges in
drafting data access management guidelines and
translating policies into Swahili.2° In any case, it is
also pertinent to note that consent for data collection
for Al systems in the Global South cannot be regarded
to be fully meaningful due to power asymmetries
between powerful multinational corporations and
users in the Global South.>"
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Separately, in the course of our interactions with
stakeholders, they highlighted methodologies and
taxonomies under data justice initiatives such as
SoberanIA, which may necessitate Big Tech
companies having to pay license fees for using
indigenous languages in the future fees.2*2 Linguistic
diversity can also pose challenges with respect to data
preparation due to certain preprocessing methods
being biased towards English.23 Researchers have
also identified how existing preprocessing methods
such as tokenisation, normalisation, and embedding
are biased towards English or other high-resource
languages, leading to systematic errors.2

There are also challenges relating to traceability at the
data collection and preparation stage, due to
standards and methods of data collection not being
uniform.2’> Non-standard data sources like paper
records, verbal reports, and informal data, which may
be more commonly used in the Global South,?*® may
have higher measurement errors, inconsistent
formats, and missing fields.2’7 Moreover, case studies
from the usage of a Nigerian health chat have revealed
how a lack of traceability and explainability in
sampling and weighting can lead to opacity and
hinder transparency with respect to representation of
communities while developing Al models.2'8

C. Model Design and Training

The model design stage includes selecting model
algorithms, defining model architecture, and training
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techniques to address the objectives and problem
statement identified at the inception stage.*9

Subsequently, in the model training stage, the model
is subjected to the data which was collected and
prepared in the data preparation stage.22° Thereafter,
the model learns to recognise patterns within this
data, which influences its capacity to generate outputs
such as predictions or decisions. Appropriate training
algorithms (which were selected during the model
design stage), such as supervised, unsupervised
learning, or reinforcement learning,2>* are applied
and implemented for this purpose.222

i. Identified Risks
Misinformation

Certain Al systems, like LLMs, are designed to have
the capability to generate synthetic media which is
virtually indistinguishable from human-generated
content. This can pose risks of misinformation and
enable deception, fraud and impersonation.223 These
risks can arise when users are unaware they are
interacting with AI chatbots, particularly in critical
sectors such as finance and healthcare.224 The usage
of Al to generate “deepfakes” can also be misused by
bad actors to create sexually explicit content,225
impersonate celebrities,>?® carry out fraudulent
activities such as identity theft and financial scams, 227
or even to influence electoral outcomes.228
Misinformation is an indirect risk in the model design
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stage because this outcome is dependent on how Al
systems are designed and safety measures for
transparency of users are taken, as discussed
subsequently.

Fairness and bias risks

In the data collection stage, the bias often occurs due
to the training data being underrepresentative.229 On
the other hand, bias in the model training stage often
occurs due to inherent biases in the algorithms used
to train the machine learning model. These inherent
biases refer to biased algorithm design, where
debiasing techniques such as reweighting (where data
is adjusted to be more representative) can remain
ineffective due to biased assumptions by designers.23°
For instance, in an attempt to mitigate gender-based
bias in hiring decisions, designers may fail to account
for race-based bias within a gender that has been
traditionally underrepresented.23 These biases are
subsequently reflected in the outputs produced by the
Al system.232 For instance, in the previous example,
the AI system may subsequently prioritise white
women in its hiring decisions over Black women.

Adversarial Vulnerabilities:

Adversarial evasion attacks occur when carefully
designed, often imperceptible perturbations, known
as adversarial examples, are introduced into an input
by sophisticated attackers. This causes machine-
learning models to produce highly inaccurate or
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otherwise arbitrary predictions, despite the input
appearing unchanged to humans during oversight.233
These attacks can undermine trustworthiness,
particularly in high-risk AI systems like autonomous
vehicles and critical infrastructure, where adversarial
failures can have severe implications for Al safety.234
For instance, a stop sign may be manipulated by
adding imperceptible noise to the image, which may
hinder an AI system from recognising the image as a
stop sign.235

Prompt Injections:

This refers to instances where bad actors, such as
hackers, exploit large language models with malicious
inputs disguised as legitimate prompts to produce
outcomes containing misinformation, sensitive
information, or information that contravenes human
ethics.23¢ For instance, in early versions of ChatGPT,
users were able to craft prompts (such as under the
guise of pretence) that enabled ChatGPT to produce
concerning outputs such as racist and homophobic
content.23”

Misalignment:

This refers to instances where the Al model learns an
indirect pattern, which differs from the human intent
and the objectives outlined during inception.238
Misalignment can give rise to unfavourable and
unpredictable outcomes at the deployment stage.239
For instance, social media recommender systems that
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have been trained to increase user engagement may
prioritise political misinformation.24°

ii. Governance Measures

Certain governance measures such as risk
management and transparency mechanisms can be
effective in accounting for these risks at the model
design and training stage.

Governance measures at the
model design and training stage

Transparency and
Explainability mechanisms
+ Explainability and
Transparency for Deployers
* Explainability and
Transparency for users

Figure 6: Model Design and Training Stage of an AT Model: Governance
Measures

Risk Management

The risk management system under the EU AI Act,
discussed in the inception stage, is understood as a
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continuous iterative process across the Al lifecycle.
While identification and evaluation take place at the
inception stage, the techniques for risk management
and mitigation are operationalised during model
design and training. Although the EU AI Act does not
stipulate any specific risk mitigation techniques, risk
management techniques can include fairness and bias
mitigation, adversarial training, safety guardrails,
and human oversight.

+ Fairness and Bias Mitigation: Bias
mitigation may be implemented differently
across the design and the training stage. With
regard to the design stage, the Al Act requires
that high-risk AI systems that continue to
learn after market placement or first use, be
developed in a manner that prevents bias
arising due to feedback loops.24t This may
present itself as instances where biased
outputs may be perpetuated as inputs for
future iterations of the AI system.242 For
instance, Al systems trained on biased data
may perpetuate biased hiring decisions,
continuing to underrepresent marginalised
communities. This could reinforce existing
biases and inform biased datasets in the
future, to be subsequently used to make hiring
decisions.

With respect to the training stage, bias and
unfairness mitigation techniques involve in-
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processing methods. In-processing methods
can often account for challenges of bias
amplification that occur during the model
training stage, where bias occurs due to unfair
algorithms, irrespective of the representative
nature of the dataset.243 For instance, a study
revealed that an algorithm over relied on past
healthcare costs to predict future medical care
needs, resulting in white patients being
prioritised. This bias arose because the
algorithm made an incorrect inference from
data, failing to account for the fact that Black
patients with similar health conditions as
white patients were incurring lower
healthcare costs due to socio-economic and
access barriers.244

These in-processing methods often include
fairness  constraints and  adversarial
debiasing.

Fairness constraints refer to formal
requirements or rules which are introduced
during the training process to mitigate biases
that may arise when AI predictions are
correlated with sensitive attributes such as
race or gender.245

Adversarial debiasing promotes fairness by

training the primary AI model in opposition
with an adversarial network (a secondary
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model that attempts to detect weaknesses,
biases in the primary model) to reduce the
influence of sensitive features.246

+ Adversarial Training:  Adversarial
training involves training an Al system to
improve robustness against adversarial
attacks by training the model on a
combination of inputs which are both clean as
well as examples of  adversarial
perturbations.247 As demonstrated in the risks
above, adversarial perturbations refer to
inputs that have been deliberately modified to
produce unfavourable outcomes. Under this
approach, Al systems improve robustness by
learning how to accurately -classify and
differentiate between clean and perturbed
inputs.248

The NIST AI100-2 (2025) report on
Adversarial Machine Learning provides
detailed guidance on adversarial training,
certified robustness techniques, and threat
models tailored to different attack surfaces.249

Regulatory provisions also recognise the need
for mitigation strategies for improving
robustness against adversarial risks. For
instance, the EU AI Act stipulates that high-
risk AI systems must be designed and
developed with appropriate robustness,
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cybersecurity, and resilience.25° The provision
specifies that security measures must include
protection against adversarial inputs,
confidentiality attacks, model flaws, and
unauthorised alterations to datasets or pre-
trained components through data poisoning
and model poisoning.25!

+ Guardrails for safety in model design:
The EU AI Act recommends taking technical
and organisational measures to achieve
robustness of high-risk Al systems against
errors, faults or inconsistencies occurring
within the AI  system’s operating
environment.?5> These can include technical
redundancy solutions, such as backup or fail-
safe plans,?53 where multiple AT models run
parallelly, allowing a model to ensure
continuity or supervision in the event of
another model failing or behaving
unpredictably.254

For instance, utilising two models, the
primary model’s outputs can be monitored for
unsafe or misaligned behaviour, especially
under adversarial queries. Under this
approach of Two-Tier or Guardian-Based
Models, a secondary or “guardian” model
supervises the primary model.>55
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+ Human OQOversight: Human oversight
refers to the ability of humans to exercise
agency to monitor, intervene or override
decisions made by Al systems.25¢ Frameworks
such as the OECD AI Principles acknowledge
the potential of Al to negatively impact human
rights and democratic values®7 (which may
occur, for instance, due to misinformation and
bias). This framework therefore
recommended human agency and oversight as
a safeguard against these risks.25® Similarly,
the United Nations Educational, Scientific
and Cultural Organization (UNESCO)
Recommendation on the Ethics of Artificial
Intelligence proposes human oversight, for
the purposes of ensuring both responsibility
and accountability. The framework suggests
that jurisdictions should seek to ensure that
responsibility across the Al lifecycle can be
attributed to specific physical persons or
existing legal 259[]

The EU Al Act reiterates this need for human
oversight, and embeds human oversight as an
overarching governance mechanism across
the AI lifecycle with specific ways
corresponding to the model design and
training stage, which are discussed
subsequently.2®> The EU AI Act seeks to
mitigate risks that may arise to health, safety
or fundamental rights during the use or
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misuse of high-risk Al systems.26* The EU Al
Act specifies that high-risk Al systems be
designed and developed in a manner allowing
oversight by natural persons during
deployment.2¢2 Under this provision, the
natural persons assigned to carry out human
oversight activities for this purpose must be
equipped with the capacity to accurately
interpret the merits and limitations of the
relevant high-risk Al system.263

Researchers have noted that while Article 14
of the EU AI Act is a significant development
towards human-centric Al, the provision does
not provide specific guidance on the modes
through which human oversight is to be
operationalised.2®4 Instead, the provision
requires that oversight measures be
proportionate to the potential risks, intended
level of autonomy and context of deployment
of the high-risk Al system.2%5 This approach
allows different sectors to contextualise
human oversight measures to the needs of
their sectors while maintaining
accountability.260

The sub-guideline on Human autonomy and
Oversight under the Inter-Parliamentary
Union’s Guidelines on Ethical Principles for
Al Use in Parliaments recognises three
primary modes of human oversight in AI.267
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These include Human-in-the-loop (HITL),
Human-on-the-loop (HOTL), and Human-in-
command (HIC). Each of these modes
corresponds to different levels of human
intervention and autonomy of the AI
system.268 The HITL model involves human
mediation of all decisions taken by an Al
system. The HOTL model employs a balance
between human oversight and AI autonomy
wherein human intervention may be carried
out during the project development phase,
shifting to human monitoring of AI decisions
and outputs during the operational phase.
Through the HIC model, a more in-depth
analysis of the implications of an Al system
can be undertaken, supported by public
feedback regarding the Al system.269

However, only the HITL mode comes into
place during the design and training stage,27°
while the other two modes come into place
primarily post training. The HITL mode of
human oversight includes supervised
learning, reinforcement learning from human
feedback (RLHF) and active learning. HITL in
supervised learning involves training Al
models through labelled datasets which have
been annotated by human data scientists (for
instance, human labelling of text as
“spam”).27* Reinforcement learning refers to
training an AI model through its interactions
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with its environment, and RLHF is a type of
reinforcement learning where the AI model is
trained with direct human feedback through
reward functions.?”2 In the case of active
learning, human input is only sought for
categories of predictions where the AI model
presents lower confidence.273

Transparency and Explainability
mechanisms

Explainable Al refers to processes and mechanisms
providing human users with an understanding of the
expected impact and potential risks and biases
associated with an AI model.27+ Transparency is a
key aspect of explainability,?75 and it can be
embedded into the model design and training stage
in a manner that allows both the deployers as well as
the users to more meaningfully understand the Al
system and its outputs.27°

+ Explainability and Transparency for
Deployers: The EU AI Act acknowledges the
need for transparency during the design and
development of Al systems and lays down
certain transparency requirements. For
instance, the EU AI Act requires high-risk Al
systems to be designed in a way that “its
operation is sufficiently transparent” that
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allows deployers to appropriately use and
interpret outputs generated by the AI
system.277  This includes providing
documentation relating to the intended
purpose, accuracy level, robustness, and
potential risks of the AI system. Instructions
for use should also specify human oversight
measures, computational and hardware
requirements, maintenance needs, and
logging  mechanisms  which facilitate
appropriate functionality.278

+ Explainability and Transparency for
users: Recent research has highlighted the
need for explainable AI, which would ensure
that users interacting with Al systems are able
to understand its outcomes and decisions.>279
Explainability supports users in
understanding, verifying, and ascribing
accountability to decisions made by AI
systems, facilitating greater transparency and
trustworthiness for users.28¢ For instance, it
can help users understand any biases that may
exist in the Al system and its impact on hiring
decisions made with regard to a user.28

More recently, research has acknowledged the
need for “human-centred explainable AI,”282
and supporting non-technical users in
understanding Al systems and their outcomes
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or decisions.?83 Some of the mechanisms to
operationalise such explainability for non-
technical users include participatory design
and non-conventional explainability
techniques. For instance, research has
underscored the significance of participatory
and co-design practices in promoting
accountability for the deployment of machine-
learning interventions implemented in the
context of local communities.28 Similarly,
participatory design practices can be
leveraged towards collaboration between
scientists and local communities for the
purpose of co-designing Al systems towards
more explainable systems.285

Moreover, the EU AI Act embeds
transparency into the design stage by
mandating transparency for users of the AI
system, to prevent risks of impersonation and
deception.28¢ The EU AI Act places
transparency obligations both with respect to
interaction with AI systems, as well as
engagement with outputs synthetically
generated by the Al system.

For instance, the EU Al Act requires providers
to ensure that Al systems designed to interact
with natural persons are designed and
developed to ensure that users are made
aware of the fact that they are interacting with
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an Al system,?§” particularly in the
deployment of emotion recognition systems
or biometric categorisations.288 Similarly,
regulatory frameworks in the US also require
the embedding of such transparency during
deployment. For instance, California’s law
regulating AI companion chatbots requires
platforms to explicitly inform child users that
conversations are Al-generated.28 Prior to
this, the Utah Artificial Intelligence Policy Act
was enacted, requiring entities to disclose to
consumers in a clear and conspicuous manner
that they were interacting with generative Al
entities, and not humans.29°

The EU AI Act also requires that Al providers
mark synthetic output (such as text, audio,
images and videos) generated by Al systems
as artificially generated or manipulated.2
This includes use cases where the Al system is
deployed to generate content which
constitutes a deep fake,292 or to generate or
manipulate text published in relation to
matters of public interest.293 Similarly, the
Indian government released draft
amendments to the Information Technology
(Intermediary Guidelines and Digital Media
Ethics Code) Rules, 2021 (“IT Rules, 20217),
requiring Gen-Al and social media platforms
to label ‘synthetic information.294 It is
important to note however, that there are
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concerns with watermarking and traceability,
particularly privacy concerns surrounding the
misuse of users’ personal data in the absence
of adequate safeguards.29

These requirements effectively become
operative at the deployment stage when the Al
provider makes the AI system available for
use.2%¢ However, the First Draft Code of
Practice on Transparency of AI-Generated
Content (“Draft Code of Practice”) published
by the European Commission (“EC”) suggests
that certain mechanisms such as
watermarking may be embedded at the
training stage itself.297

Moreover, it is also imperative for Al systems
to be designed in a manner to allow for
compliance with transparency obligations at
the deployment stage. The EC is currently
developing Guidelines and a Code of Practice
on Transparent Al systems to provide clarity
on technical implementation means for
operationalising Article 50.298

Once released, these technical
implementation = mechanisms can be
embedded to adhere to transparency
requirements at the model design and
training stage. In this manner, transparency
to the user in terms of notifying them when
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they are interacting with Al systems or Al-
generated outputs, may help mitigate risks
arising from deception and impersonation
facilitated by interactions with Al systems.

iii. Considerations for the Global South

While Al systems are increasingly being deployed in
Global South countries, technical governance
mechanisms for AI safety deployed in these
jurisdictions often fail to take local contexts into
account.299

For instance, there are certain constraints with
respect to adversarial robustness. Research has
identified that developing adversarial robustness
requires more training data.3°© This can have
implications for marginalised communities in the
Global South whose data may be underrepresented in
datasets.3°* For instance, our expert stakeholders
reiterated the challenge of limited existing digital data
in the Global South. They highlighted the work of
projects such as Masakhane in Africa which are
working on creating datasets to increase access to
low-resource African languages.3°2 They also
highlighted the need for the Global South to focus on
curating higher quality datasets with less data in
order to prioritise quality of data over quantity, the
latter of which is currently limited.
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Moreover, certain challenges in relation to human
oversight also present themselves. Jurisdictions in
the Global South have recently been recognising the
need for human oversight as a governance
mechanism to mitigate safety risks in the Al lifecycle.
The recently released India AI Governance Guidelines
also include human oversight as a safeguard to
account for risks stemming from loss of control in
sensitive sectors, within their People-First Approach
under their Key Principles.3°3 However, it is also
imperative to consider the limitations of human
oversight and not over-rely on this mechanism for AI
safety.304

The India AI Governance Guidelines acknowledge the
limitations of human oversight from a sectoral
perspective (with respect to high-velocity sectors
where direct human oversight may not be
effective).3°5 However, research on Article 14 of the
EU AI Act points to broader challenges with human
oversight, like humans’ cognitive constraints, and
how automation bias can pose constraints to the
efficacy of the provision.3°® These concerns are
particularly relevant considerations for the Global
South as well. This is because the AI ecosystem in
certain jurisdictions within the Global South faces
significant constraints with respect to limited
technical knowledge and experience operating Al
tools.3°7 This may present challenges with human-in-
the-loop models currently envisioned.
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It is also crucial to consider the concept of
“explainability pitfalls.”3°8 Researchers contend that
irrespective of explainability, users may disregard
independent judgment and subordinate their
decision-making to Al systems.3°9 This is particularly
relevant because studies have pointed to the
heightened trust users in Global South jurisdictions
such as China, Brazil and India have for algorithmic
decisions and Al systems.3© While this ties to the
arguments of automation bias discussed by Fink, this
heightened trust could also mean that transparency
obligations such as those under Article 50 of the EU
Al Act, requiring providers to indicate to the user that
they are interacting with an Al system like a chatbot,
may not be sufficient approaches for Al safety.

D. Verification and Validation:

The vocabulary of ‘verification and validation’
(henceforth, “V&V”) of Al systems can be traced back
to the need to ensure pre-deployment accuracy of the
system. V&V represents both a pre-deployment
procedural stage and ongoing operationalisation of
technical measures throughout the AI lifecycle,
focused on evaluating and testing an AI system.
Concretely, the key purpose at this stage is to ensure
that the system meets the requirements set at the
inception stage and performs as intended.s3" It is, in
essence, built into the lifecycle as a risk mitigation
tool, seeking to address challenges that may arise ex-
ante.
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Verification ascertains whether the design and
development of an Al system or its component is in
line with pre-determined requirements at earlier
stages, and validation checks if the AI system fulfils
its objectives within the context of its purpose.32 An
example of verification methods includes testing a
chatbot’s factual accuracy against the knowledge base
it was trained on.3' Validation can involve testing the
prediction abilities of the AI system just before it is
deployed, by inputting example prompts in a virtual
environment.34 Rigorous testing and evaluation can
determine risk and failure points throughout the
lifecycle, and help mitigate these to ensure not only
compliance but also build confidence in the ability of
the system to handle real-world complexities.

i. Identified Risks

The risks previously identified in prior stages
continue to exist, but they may present themselves
differently. This is because risks associated with data
collection, such as poisoned data, privacy leaks, bias
in outputs, etc., must continue to be addressed at the
V&V stage. Other specific challenges and risks unique
to the nature of V&V are rooted in the technical
operationalising of testing methods, especially when
concerned with the novel features of Al systems.3!5

Lack of Specific Models and Criteria

A primary issue is the absence of clearly defined
validation models and criteria, which hinders the
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design of test cases for AI functions. Scholars have
identified attributes of AI systems that make it
difficult to create clear models and criteria for V&V,
such as the dependency of behaviour on training data
and subsequent uncertain behaviour regarding
untested data. They also discuss the oracle problem as
a further V&V concern, as explained below, which
makes it difficult to clearly define the accuracy criteria
for the correct outputs for each individual input.3:°

Isolated Model Testing

Another concern is isolated model testing. V&V
processes must focus on testing the Al systems within
the complete socio-technical ecosystem, and not just
individual models.3”7 End-user and Al interactions
determine real-world performance, and isolated
model testing would fail to consider the overall
impact of the system in the environment it is deployed
into.38 The full effect of an AI system can only be felt
once it is released to the wider public, and can be
influenced by individual attitudes and user
decisions.3 Such user behaviour can introduce
variability, leading to emergent risks from
entanglement with all components of the AI
system.32° This can be understood as a manifestation
of the butterfly effect, where one component’s
interaction (here, the user behaviour) with all the
other components of the AI system can lead to a
compounded effect. For instance, real-world testing,
where such user behaviour is incorporated, can
present ethical risks and dilemmas on bias
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amplification from flawed data, and the overall
system exhibits greater bias than a single
component32! Further, the opacity of an AI system,
and the knowledge and communication gaps between
experts (the designers, developers and deployers) and
the end-users, is a hurdle when designing questions
that can be used to test for outcomes that may be
present in the real-world.322 User decisions made
based on outputs generated by an Al system have
significant real-world impact. While the developers
may be aware of the intended use of the Al system and
design it accordingly, they may not give sufficient
consideration to pre-existing biases that may be
amplified when post-deployment user input is
introduced to the system. Such knowledge and
communication gaps can lead to instances where bias
persists due to prediction errors. For example,
predictive grades based on ‘typical performance of
students’ may reinforce socio-economic inequalities,
even though the algorithm was designed to avoid such
inequalities in grading.323

The ‘Oracle Problem’

The ‘oracle problem’ is another crucial risk for
testing/validating Al systems.324 If the Al system is
expected to function autonomously for an extended
duration, it is designed with the ability to adapt or
change its behaviour and outputs according to its
environment and input.325 It is nearly impossible to
certify what these circumstances can present as, and
what the desired outcome to verify and validate must
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look like. A related risk is the impossibility of
accurately verifying because of the sheer scale and
diversity of the environments. For example, in the
automotive industry, verifying and validating Al
systems designed for autonomous vehicles requires
testing the cars for the possibility of fatal accidents.
According to researchers, it is infeasible given the
breadth of testing required to conduct adequate
testing that determines a safe Al application. This is
because it would require driving 433 million
kilometres and an ‘impossible’ amount of time to
conduct complete testing.326

Additionally, there are very limited standards for V&V
for different AI systems, including procedural
guidance and metrics. Firstly, existing best practices
designed for testing conventional function-based
software are rooted in well-defined inputs and within
specified behaviours. However, these have been
stretched and adapted for Al systems that are much
wider conceptually, based on machine learning
models using data-driven training.32” Secondly, the
required tools and frameworks are rare, sector-
specific or focused on niche domains, and where they
are available, they are scattered and non-
comprehensive.328

ii. Governance Measures

Notable governance and technical measures are
relevant throughout the lifecycle, such as data
provenance and adversarial training, which continue
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to apply and can be operationalised as key measures
in addressing identified risks at the V&V stage as well.
Interestingly, assessing the Al systems for potential
harm can involve scientific and philosophical
questioning, where Al is viewed as a method towards
understanding its proximity to mimicking human
intelligence.329 Other testing and V&V looks at
evaluating performance based on the AI system’s
success within real-world, practical applications.33°

Governance measures at the
verification and validation stage

Benchmarking

Audits

Regulatory Indicators
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Figure 7: Verification and Validation Stage: Governance Measures

Sandboxing

Al sandboxes seek to foster innovation while
safeguarding safety by testing within a controlled
experimental environment in the pre-market stages.

Technical sandboxing is a form of contained testing,
where the functions of an Al system can be executed
under tightly controlled frameworks which can
include runtime limits, restricted privileges such as
limited access to the system’s memory, etc.33* This
allows the developers to evaluate and test files or
processes while mimicking real execution conditions,
without exposing the system to compromise, such as
malicious attempts like prompt injection.332

Regulatory sandboxing allows for this technical
testing to take place in an environment with reduced
regulatory constraints.333 This creates a safe space for
developers and legislators to work together, under
regulatory supervision, with individual legal
guidance.334 As a governance mechanism, sandboxing
can promote compliance with relevant regulatory
obligations.335 This is because conducting sandboxing
testing during V&V encourages the improvement and
implementation of legal certainty, best practices and
evidence-based learning throughout the AI
lifecycle.336
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There are risks to regulatory sandboxing, and
scholars argue that this may lead to developers
evading responsibilities, lower safety standards and
expose end-users to the very harms regulators seek to
protect them from.33” Careful and intentional
operationalisation of sandboxing is necessary to
ensure that the balance between innovation and
regulation is maintained. To encourage this, the EU
Al Act for example, calls for a sandbox plan - a
document describing the objectives, timeline,
methods and requirements for measures taken within
the sandbox.338

Along similar lines of testing in a controlled
environment, but distinct from sandboxing, are trials
in a mock environment. Trials in a mock environment
are a method of testing where the AI system is
validated in an environment simulating an actual
real-world environment. Such a trial can also be
conducted in a direct or partial copy of the
environment where the system will be deployed
into.339 This allows testers to look for malfunctions
and correct them during pre-deployment. The
potential damage is in a controlled environment and
does not impact real-world performance negatively or
cause harm to users.34° Scholars present that trials
can be cheaper in situations where the final
environment is ‘simple enough’ to simulate.34* For
example, the trial of a music application was
conducted by monitoring subjects’ heartbeats while
studying, thereby testing the ability of the system to
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recommend music that would improve efficiency. The
system was used as intended, but the testing
environment was ‘mock’ - in the way that the students
were aware and studying in a replicated environment,
and not when they would naturally be studying.342
Given this simplified simulation of the real-world
environment, there are limitations that follow.
Scholars present that in a real-world environment,
users’ emotions and behaviour are influenced by
various stimuli, and the whole breadth of these may
not be represented in the mock environment.343

Benchmarking

Benchmarks are a particular combination of datasets
that can include testing data, training data, and
performance metrics.344 Together, these represent
specific tasks or abilities of the ATl model and are
selected as a shared framework to comparatively test
the efficiency and safety of Al systems.345 Conducting
assessments using benchmarks operationalises Al
safety efforts and increases standardisation due to the
intentional selection of benchmarks and the decision-
making process in developing benchmarking
frameworks.34¢ To further transparency and
traceability, scholars opine that policymakers must
ensure that applied and trusted benchmarks are well-
documented, have clearly defined tasks and
performance evaluation mechanisms.347 Accordingly,
the EU AI Act calls for the development of
benchmarks and other measurement methods that
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can help assess accuracy and robustness levels of
high-risk systems.348

Despite widespread reliance on benchmarks,
researchers discuss concerns on the current use, such
as ethical questions on what should be measured,
according to which standards and what are the
downstream effects.349 As scholars have discussed,
LLM benchmarks, for example, are hindered by limits
of their creator’s knowledge and may not be able to
fully ascertain future and emerging Al capabilities,
given they rely on the -capacity of human
understanding. As a result, these knowledge
constraints of creators also impact how specialised
and nuanced benchmarks can be, especially in more
sensitive and contextual sectors like healthcare.35°
The performative and generative nature of
benchmarks must also be considered, in the way that
benchmarks not only describe and measure but also
influence and actively shape the performance metrics
that AI systems can be tested on.35* Benchmarks are
powerful and not neutral - they impact how Al
systems are trained, tested, applied, and have
economic, cultural and safety effects.352 Large
companies can shift their decision-making and
business strategy, or raise massive capital based on
the benchmark testing results.353 Scholars also
discuss how these large companies have a vested
interest in the technology performing well, and can
also exercise influence over the designing of the
benchmarks. This can be a major conflict of interest
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in designing adequate benchmarks that can test for
safe Al.354 Specific concerns include ideas that
mitigating Al safety risks that are continuously
evolving and context-dependent are challenging for
benchmarking as a V&V process.355 Scholars
recommend designing and applying benchmarks that
are dynamic, continuously assessed for potential
misuse, have rigorous evaluation protocols on
validating and updating benchmark results, and can
evaluate unintended consequences, alongside the
performance of an Al system.35°

Red teaming

Red teaming is a structured testing methodology that
uses adversarial testing to assess the security and
safety of an AI system.357 The process involves
simulated real-world attacks, misuse and abuse
scenarios that target the weaknesses within a
system.358¢ These attacks can appear as prompt
injection, data poisoning and model jailbreaks to test
a system’s resilience.35° These ‘threat models’ are part
of the interactive, iterative process and test the
defences to gauge harmful behaviours such as violent
content generation, and privacy issues like data
leakage.3%° The verification processes can harness red
teaming by engaging with external stakeholders like
local civil society and advocacy groups, to incorporate
risks of local malicious or authoritarian misuses that
the Al system must be tested against.36
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Audits

Audits as a governance mechanism are key in
addressing risks in the development of Al systems
and are typically concerned with investigating the
systems and data, generating reports for both
developers and wusers, and working towards
transparency and explainability.362 As part of V&V,
internal audits allow for further accountability and
traceability given the proximity to ongoing
development procedures. Internal auditing can also
address challenges that arise out of the ‘blackbox’
nature of algorithms, playing a key role in
demystifying the opacity. By introducing structured
oversight and verification methods, it promotes
transparency through techniques like model
documentation, where auditors require detailed logs
of data inputs, processing logic, and output
decisions.3%3 This allows stakeholders to trace how
algorithms arrive at conclusions, reducing reliance on
unexplained predictions.3%4 Adequate access to
information during the V&V stage would allow for
well-conducted internal audits.3®s Auditing helps
accreditation with globally accepted standards, like
the International Organisation for
Standardisation.3¢¢ There are also external audits,
which are discussed later in the report as a
governance mechanism for the Deployment and Post-
Deployment stage.
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Trials/ Testing in Real Environment

Real-world trials of AI systems are critical, since they
are the sole non-hypothetical approach to testing
whether an AI system is safe, trustworthy and
effective under realistic conditions, beyond
benchmarking and simulation-testing.3¢” Real-world
social contexts can pressurise Al systems, and
analogous pressures are placed on the system in order
to test it. Such trials can be conducted with increasing
complexity, with small missions to the full scope of
the Al system.3¢8 Rigorous trials can be laborious but
they reveal possible issues in component
collaboration, communication, sensors or usability of
the system.369

The EU AI Act presents that the testing of high-risk
systems must include real-world conditional testing
and a comprehensive plan must be made, which is to
be authorized by a market surveillance authority.37°
The real-world testing under V&V is required to last
only as long as necessary, with informed consent, and
suitable and qualified human oversight.37

Regulatory Indicators

While considerations around regulating AI can be
traced in pre-existing and ongoing developments,
industry practices and regulatory standards, there are
limited obligations specific to V&V in the current
regulatory climate. The EU AI Act indicates
requirements where validation processes must be
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relevant, sufficiently representative, error-free and
complete with regard to the intention of the testing
mechanism.372 Transparency of V&V methods and
results is vital, as it serves as additional information
for deployers, allowing them to interpret the AI
system and use it appropriately.373s The US NIST has
also developed an AI Risk Management
Framework.374 NIST focuses on engagement with
diverse internal teams, perspectives of stakeholders
and external collaborators to improve the capacity for
context understanding, assumptions of use,
limitation grasp, etc. - which directly relate to
ensuring robust testing mechanisms relevant to V&V
processes are developed.3”s The framework
emphasises a need for separation of duties, indicating
that the developers and users of the Al system must
be distinct from those conducting the V&V processes
to ensure effective operationalisation of the risk
mitigation efforts.376

Global South countries like Brazil have proposed new
laws on governing artificial intelligence, which
include guidance on developing sandboxes to foster
innovation.3”? The law indicates requirements on
validation for sandboxing and ‘adoption of adequate
parameters for the separation and organization of
data for training, testing and validation of the results
of the system.’s7® Further, the OECD AI Principles
recommend testing and validation protocols,
highlighting the iterative and not strictly sequential
nature of V&V.379 Continuous validation plays a key

Operationalising Al Safety: A Lifecycle Approach 78



Centre for Communication Governance

role in ensuring that risks associated with the oracle
problem, for example, can be addressed in an ongoing
manner, even post-deployment of Al systems.3%° It is
only through continuous V&V that concerns around
fault-tolerance, safety, or quality assurance can be
resolved.

iii. Considerations for the Global South

As discussed, mechanisms under V&V critically
depend on the quality of both the testing data and the
team. Different people should bear the responsibility
of training and testing; diversity should not be limited
to the data, and must be present throughout the
lifecycle. If the testing teams are not engaged locally,
in regional contexts, V&V processes cannot
adequately recognise risks specific to the local
communities and the environment. AI models
developed in the Global North are typically trained on
data that underrepresents the diverse population,
languages, culture and specific local context in the
Global South. Testing of similar datasets as input
directly without Global South context specific edits
can lead to performance degradation and continuing
bias when the system is deployed locally, because the
system is designed and tested to perform at its highest
ability in a Western Demographic and not the Global
South.38

English-centric benchmarks are frequently poorly
translated and are rife with errors.382 They overlook
local contexts like regional informal laws or

Operationalising Al Safety: A Lifecycle Approach 79



Centre for Communication Governance

traditions, and cannot capture the nuances required
when using benchmarks to verify and validate an Al
system.383 Setting newer benchmarks that are Global
South-sensitive with datasets on multiple categories
ranging from literature to media, in both low and
high-resource languages, require comprehensive
efforts.

These benchmarks must capture both cultural
breadth and depth to reflect local traditions and
values.3®¢ One method to operationalise this is to
include more substantive participatory approaches,
and bringing in relevant stakeholders from local
communities for consultations on inclusion,
collaboration and ownership.3%5 Participatory
benchmarks enable performance measurement on
broader dimensions, and can be designed and
enabled to utilise human judgment by an individual
with relevant knowledge and context.38¢ For Al
systems to be universally useful, they must meet the
users where they are by respecting the regional
contexts, and so must the verification and validation
methodologies used to test them.

E Deployment & Post Deployment

The final stage of an Al system’s lifecycle can be
further divided into specific stages: the initial
deployment and post-deployment.  Ongoing
operation, continuous monitoring, revaluation and
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retirement are aspects of the post-deployment
stage.387

Deployment is the stage at which the AI system is
revealed to the target audience and can be put into
use, provided it has been trained, tested, verified and
validated. The risks at this stage are more pronounced
than previously identified risks, since data that was
not part of the training cycle, as well as unforeseeable
inputs from users, and real-world impact of outputs,
are no longer hypothetical.

i. Identified Risks

Users and impacted communities are at a risk from
direct and indirect harms from Al systems which they
are exposed to during real-world use, revealing
vulnerabilities missed in prior risk mitigation and
uncovering new threats. The following discussion
focuses on the latter. Upon deployment, an Al system
can present social harms, such as biased outputs that
reinforce existing discrimination in policing or
healthcare.388 With newer inputs from end-users,
privacy risks can be revealed.389 Misuse of an Al
system is a major risk post-deployment, where an Al
system not intended for surveillance could be used to
do so0.3%° A further risk is the dehumanisation of
personal healthcare decisions.3* For example, the
latter is part of a larger concern on the erasure of
humanised healthcare systems, with increasing
automated healthcare resulting in reduced doctor-
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patient relationships and individuals’ medical
autonomy.392

Data Drifting and Model Degradation

Post-deployment, Al systems bear the risk of losing
accuracy due to data drifting. This phenomenon can
occur in certain scenarios, where data collected and
trained on begins to gradually differ from the data
during the operation; it can in some cases have
negative implications, leading to incorrect
predictions or outcomes. When data drifts, it can lead
to model degradation - where the AI system’s
performance declines with changes in the data or with
changes in relationships between the variables on
which it was trained and tested.393

Data drifting can be caused by the data sources
exhibiting seasonal variations or changes in the user
behaviour with evolving preferences, impacting input
distribution.394 A type of data drift is concept drifting,
where the statistical relationship between input data
and output/target variable changes with time. The
risks associated with this are a direct challenge to the
training of Al systems based on stationary data.s3%
The extent of risk differs based on the application of
the system. For example, Al systems used in
diagnostic medicine have an impact on patient
outcomes since the diagnoses depend on the
reliability of disease prediction models; hence the
continued/ long-term precision of the system post-
deployment must be ensured.39°¢ Data drift in
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healthcare applications can occur due to differences
between medical practices, training versus clinical
use, changes in patient populations, disease patterns,
etc.3%” For instance, in cases where data drifting leads
to model degradation, real-world social harms can
occur. When Al systems are deployed in predictive
policing to identify recidivism, it can lead to an
innocent person being misidentified as a possible
repeat offender.39®8 Automatic decision-making
abilities of an AI system for sensitive topics such as
crime control is a risky and unstable process, and
requires interrogating the necessity of Al application
in such fields.399

Model Inversion

Model inversion is a privacy risk where attackers seek
to obtain sensitive information from AI systems,
specifically machine learning models. Once an Al
system has been deployed, a hostile user can reverse-
engineer the learning and training procedures to
reveal information that was part of the original
training data.4°° Strategic querying exploits the
tendency of an AI system to retain knowledge of
training data, and attackers analyse outputs to deduce
or reconstruct personally identifiable information
that could include biometric information, medical
records or financial details.4o!
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Additional Risks

Previously discussed risks like data poisoning
embedded into training data that lead to malicious
backdoors, which may have been missed during the
initial testing, can impact the accuracy and user
experience once an Al system has been deployed.4°2
Malicious backdoors, in particular, can weaken the
system and reduce its trustworthiness, and make it
vulnerable to manipulation once novel data is fed into
the system as user inputs.

There are on-ground and practical concerns with AI
system governance that persist throughout the
lifecycle, such as infrastructure instability and low
digital literacy among local deployers, oversight
personnel and end-users. There are also concerns
with a lack of information provided by AI developers
to deployers and users, including a lack of proper
documentation on the purpose, possible use cases,
training data, V&V undertaken, human oversight
requirements, and incident reporting mechanisms.
Defining clear and traceable selection processes for
responsible and expert personnel are essential to
mitigate concerns like oversight gaps and
accountability failures. Existing risks include the
exacerbation of inequalities and vulnerability of users
due to weaker oversight. Notably, there are also safety
vs functionality trade-offs due to a rapidly deployed
Al system given the innovation mindset.43 When
faster deployment is prioritised over sufficient risk
and harm assessments and oversight mechanisms, it
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can expose the deployers’ organisations to fines and
operational errors.4°4 All these are specific concerns
that continuous monitoring must account for prior to
asserting the accuracy and quality of an AI system.405

iii. Governance Measures

The governance and technical measures for the risks
that present at this stage are similar to those
discussed previously, and have a continuous nature to
them. Risk mitigation and governance measures
during and after deployment should account for
abuse and accidental misuse of an Al system, social
harms, inadequate human monitoring, and reporting
on the purpose and limitations of the AI system for
users, etc.

Deployers and providers of high-risk Al systems
applied in sensitive environments also necessitate
broad mechanisms such as sharing instructions on
use for end-users, conducting fundamental rights
impact assessment and conformity assessments,
logging and sharing of technical information with the
relevant stakeholders including accuracy metrics and
record keeping.4°® The specifications come from the
EU AI Act, but are indicative of governance measures
that are omnipresent, some of which overlap with
mitigation techniques discussed below.
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Governance measures at the deployment
and post-deployment stages

Incident Reporting

Human Oversight

Model Retraining

Figure 8: Deployment and Post Deployment Stage of an AI Model:
Governance Measures

Monitoring and Maintenance

Monitoring and maintenance are necessary to ensure
the AI system’s robustness, ethical compliance,
stakeholder trust, and safety of users and impacted
communities. Specifically, to address data and
concept drifting, drift detection frameworks are
required.4°” Proactive approaches to drift detection
require regular monitoring of the model performance
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based on pre-determined metrics, ongoing learning
and collecting data. Tracking performance across
different user groups are some ways to study the root
cause.408

Behavioural pattern and anomaly detection is an
element of ongoing monitoring which can help
address model inversion risks.4°9 By tracking and
analysing repetitive, near identical prompts, possible
model inversion can be detected early. For example, a
single user submitting over a certain number of
semantically similar queries can be flagged, like
guardrails in a chatbot application that are triggered
if a user input violates the safety policy of the
deployed system.4° Qutput screening and content
filtering are important steps to be taken during the
pre-deployment phase that can impact post-
deployment risks, especially model inversion and
malicious use.#" Scrutinising what outputs the Al
system creates can help govern the leakage of
personally identifiable information during malicious
attacks in a proactive manner.

Post-market monitoring is a requirement under the
EU AI Act for high-risk AI systems, where systematic
collection, documentation and analysis of relevant
data allow the system providers to enable continuous
evaluation.42 The EU AI Act also indicates serious
incident reporting requirements.43 Similarly, the
NIST AI RMF also recommends continuous vigilance,
monitoring and human oversight of AI-systems.44
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Logging (including automatic logs) and record
keeping of the information collected as part of the
monitoring is necessary to ensure traceability and
foster accountability, and is also a requirement under
the EU AI Act for high-risk systems.4:5

Incident Reporting

A necessary governance mechanism is the availability
and encouragement of Al incident reporting. The
OECD defines an ‘Al incident’ as an event where an
Al system results in individual, environmental or
societal harm due to malfunction, misuse of bias.41
The availability to report an incident fosters trust
amongst stakeholders, and creates space to have a
risk or impact-based concern addressed.+7 Per the EU
AT Act, for high-risk Al systems, incident reporting is
a vital mechanism, enabling awareness and
communication amongst deployers and end-users.
The EU AI Act requires deployers to inform the
providers of an Al system, distributors and relevant
market surveillance authorities once a serious
incident has been identified.48 It is important that the
process is straightforward, evidence is collected and
the responsible individuals within the Al lifecycle are
identified in order to investigate, address and adapt
the system as required. Incident reporting
mechanisms also act as a compliance measurement
tool, enabling authorities to evaluate the shifting risks
and associated compliance requirements, as the Al
system continues to evolve once it has been
deployed.419

Operationalising Al Safety: A Lifecycle Approach 88



Centre for Communication Governance

Incident reporting can also be employed by the
deployers themselves, where categories of internally
identified incidents depending on the risk-level must
be reported to regional authorities and other
stakeholders. These can range from voluntary to
mandatory reporting, based on the consequences of
said incident, ensuring accountability.42° The gravity
of the incident determines whether it is mandatory to
report or not. As an example, the new Brazilian
artificial intelligence law indicates requirements for
developers and deployers to report serious incidents
to competent authorities.+!

Per the OECD, complaint addressal forums and
incident reporting are the first steps in creating a
feedback loop, allowing for the communication and
recording of any incident where an Al system may
have resulted in individual, environmental or societal
harm.422 Such reporting can also help stakeholders
such as policymakers assess the harms in light of
building governance frameworks. The Ministry of
Electronics and Information Technology,
Government of India issued the India AT Governance
Guidelines, where the creation of a national database
for incident reporting has been suggested. This
database is intended to act as a source of information
for policymakers on real-world risks and harms, and
also inform the development of risk frameworks. The
recommendations encourage voluntary incident
reporting by developers, and creates space for private
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organisations, sector-specific = regulators and
individuals to participate.423

Feedback Loops

Creating and implementing a feedback loop is key. A
feedback loop allows the deployers to collect, analyse
and learn from direct user data to operationalise a
cycle of continuous improvement. Feedback can also
be collected as consumer interactions and reviews,
email surveys, etc.424 Deployers can then engage with
the incident reporting knowledge and feedback to
maintain and improve the Al system.4?5 In the India
Al Governance Guidelines, the Ministry of
Electronics and Information Technology,
Government of India discusses the development of a
structured feedback loop through reporting, which
can guide policymakers on emerging risks, patterns of
harm and their impact.42¢

Human Oversight

The ‘human in the loop’ mechanism, discussed in the
model design and training stage, is also a key
governance mechanism to prevent over-reliance on
automated systems in the deployment stage. This is
particularly significant in critical deployment sectors
such as hiring practices, medical diagnostics, or
health insurance.+>” Ongoing monitoring and control
of an Al system requires human involvement and
informed personnel capable of addressing issues that
may arise during development and post- deployment
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of the system.428 Human decision-making can be pre-
defined, with designated tasks such as explicit
approval before an Al system takes a certain step, or
requiring approvals adhoc, such as intervention
during irregular inputs leading to erroneous outputs
429 The EU AI Act emphasises safeguards for
individual rights, with transparency at its core. The
EU AI Act mandates human oversight in high-risk Al
decision-making, like healthcare, and requires that
the personnel are competent, trained and
authorised.43° Human oversight is also required for
operationalisation of other principles for safe AI, such
as explainability, where the ability to understand and
interpret Al systems underlines ethical deployment
and post-deployment processes.43' Techniques such
as reinforcement learning from human feedback, are
also part of the human oversight mechanism, and are
employed to mitigate harmful outputs that may
present themselves once an AI system has been
deployed.432

Post-Deployment Audits

Conducting regular independent third-party security
assessments and audits of the Al systems is necessary
to determine vulnerabilities. This includes bias and
fairness audits to ensure the overall safety of end-
users. Auditability refers to the levels of access to
information, quality of procedural documentation,
and the ability to be systematically examined,
analysed and understood.433 Thoroughly conducted
audits can indicate whether the principles of Al safety
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such as transparency, explainability and accuracy
have been fulfilled. Third party audits should not just
be permitted, but encouraged, including by civil
society organisations, researchers and Al ethicists.
The results and feedback from these post-deployment
audits work alongside mechanisms such as
maintenance and also work towards model
retraining, as discussed next.

Model Retraining

Model retraining is an important governance
measure - it indicates the willingness of developers
and deployers to ensure continuous improvement of
their Al system in order to maintain its accuracy and
usefulness based on the initial purpose. Adaptive
learning algorithms must be incorporated into the AI
systems, along with the possibilities of human
intervention and updating of data to retrain the
model where it is unable to adapt and maintain
accuracy. A regular retraining schedule depending on
the environment and industry the AI system is
deployed into, combined with a ‘rolling window’ of
training - where the most recent data is regularly
incorporated to maintain relevance can mitigate risks
of the AI system’s degradation.43¢ Incorporating
historical and new data requires a delicate balance
between newer but less static trends and long-term
patterns that have been previously recognised and
verified in order to train the AI system.435 Such
retraining is an operationalised mechanism of a
mandatory requirement under the EU AI Act, where
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providers of high-risk AI systems are required to take
corrective actions if they believe the system no longer
conforms with its requirements.43¢

iii. Considerations for the Global South

Various elements of heightened risks in the Global
South are amplified post-deployment. Previously
discussed considerations, such as low infrastructure
availability, developing regional legal accountability
mechanisms, inadequate reporting tools, etc.
continue to present challenges.437 Imbalanced
development and staggered iterations of scientific
advancements are unfortunate realities when
deploying Al systems in the Global South, and must
be approached carefully and intentionally in order to
avoid exacerbating social harms.438

Historically disproportionate power dynamics
continue to manifest even in technological
deployment, and require differential application of Al
systems, especially in sectors where racial and
gendered information can impact the decision-
making abilities of an AI system.43 The sector-
specific risks are necessary to highlight, for example,
in hiring, where the AI systems risk reproducing
systemic racism by relying on historically biased data
and opaque algorithmic processes.44° Al application
for these purposes is a sensitive and risky field of
application, especially with the multitude of human
variables involved.44! Predictive algorithms that are
not adequately sensitised and contextually trained
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can continue to perpetuate discriminatory tones in
studying linguistic patterns.442 For example, hate
speech detection algorithms identifying Black
vernacular as ‘toxic’.443 With hate speech detection,
there are further challenges in advancing research on
South Asian languages, including the limited
availability of data, data that is code-mixed, i.e. a mix
of regional languages written in roman script and
emojis.444

Consider the model inversion risks discussed earlier
that can lead to biometric data leakage with targeted
prompt injections. Such concerns around privacy are
further exacerbated due to lower digital literacy and
lack of awareness around sharing personally
identifiable information online.445 Users with limited
understanding of digital privacy concerns are less
likely to have foresight on potential harms they may
face.446 With drift detection, localised data may be of
poor quality, non-standardised or scarce; and
continuous vigilance as to the quality is complicated
when seeking to prevent model degradation. This
challenge arises because real-world data from diverse
regions often includes variations like regional
dialects, inconsistent collection methods, or limited
samples that diverge from original training sets,
requiring constant adaptation to avoid performance
drops.

Models conceptualised in the Global North and
embedded into AI systems are typically developed
and trained on data from the Global North.447 Their
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accuracy, once deployed in the Global South, can be
impaired. With limited resources spent on post-
deployment monitoring, lack of transparency, limited
regional oversight and relaxed compliance and
regulatory requirements, errors that may pose
significant harms may not be immediately detected,
let alone rectified.44% Post deployment monitoring can
be improved by documenting instances of negative
impact, with examples on ‘toxicity scoring’ acting as
reverse pedagogy - where impacted end-users can
expose an Al system’s pitfalls and limitations,
eventually allowing for improvement in subsequent
updated versions of the technology.+9 The flow of
information must not be limited downstream, so to
speak. Culturally rich and diverse digital ethics can
help mitigate, to a certain extent, issues around lack
of awareness amongst both deployers and end-
users.45°

The robustness and institutional resilience of an Al
system is vital for continuous performance. Targeted
localised bias auditing is necessary to ensure that an
Al system is operationally robust based on the market
it is deployed into, especially in the Global South.
These audits and other monitoring systems must look
at local categories like caste, socio-economic class and
regional dialects in languages - categories that may
not be extensively studied in the Global North. The
monitoring can take place through impact
assessments and audits, before and after deployment,
and involve local communities and civil society
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organisations. In Brazil, the proposed Artificial
Intelligence law also introduces requirements for
deployer-led impact assessments for high-risk Al
systems such as biometric identification.45* Scholars
have recommended a ‘Decoloniality Impact
Assessment’, as an impact assessment methodology
that is context-sensitive and evaluates Al systems in
relation to the ‘inherent colonial legacies, global
power asymmetries and epistemic injustices.’452 Such
assessments focus on questioning how the Al lifecycle
and generic risk mitigation measures are not only
insufficient in the Global South contexts, but in fact
can reinforce structural inequalities, marginalise
local knowledge pathways and continue to benefit
from pre-existing exploitative systems.453
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